cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A206872 Number of 3 X n 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

7, 49, 211, 1153, 6139, 31529, 165783, 867545, 4529439, 23698777, 123917699, 647878921, 3387923179, 17715041713, 92629806615, 484357042545, 2532662234303, 13243089222385, 69247131747475, 362087861614577, 1893329530949883
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2012

Keywords

Comments

Row 3 of A206871.

Examples

			Some solutions for n=4:
..1..1..1..1....0..1..0..0....1..0..0..1....0..0..1..0....0..0..1..0
..1..1..1..1....1..1..0..0....0..1..0..0....1..0..1..0....0..0..1..1
..1..1..1..1....0..1..1..0....0..0..1..0....0..1..0..0....1..0..0..1
		

Crossrefs

Cf. A206871.

Formula

Empirical: a(n) = 3*a(n-1) + 7*a(n-2) + 27*a(n-3) - 13*a(n-4) + a(n-5) - 31*a(n-6) + 5*a(n-7) - 2*a(n-8) + 4*a(n-9).
Empirical g.f.: x*(7 + 28*x + 15*x^2 - 12*x^3 - 29*x^4 - 26*x^5 + 3*x^6 + 2*x^7 + 4*x^8) / ((1 - x)*(1 - 2*x - 9*x^2 - 36*x^3 - 23*x^4 - 24*x^5 + 7*x^6 + 2*x^7 + 4*x^8)). - Colin Barker, Mar 04 2018

A206866 Number of n X 3 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

7, 49, 211, 889, 3967, 17737, 78799, 350017, 1555843, 6915889, 30739447, 136629265, 607288711, 2699272273, 11997693379, 53327205481, 237028156975, 1053540057337, 4682762813455, 20813890672513, 92513343672307, 411202253906785
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2012

Keywords

Comments

Column 3 of A206871.

Examples

			Some solutions for n=4:
  0 1 0    1 1 1    0 1 1    1 1 0    0 1 0    0 1 1    0 0 1
  1 0 1    1 1 0    1 1 0    0 0 1    1 0 0    0 1 1    0 0 1
  0 0 1    1 0 0    1 1 0    0 0 1    1 0 1    0 1 1    1 1 1
  0 1 0    1 0 1    1 0 1    1 0 0    1 1 0    0 1 1    0 0 1
		

Crossrefs

Cf. A206871.

Formula

Empirical: a(n) = 4*a(n-1) + 8*a(n-3) + 4*a(n-4) - 2*a(n-5) - a(n-6).
Empirical g.f.: x*(7 + 21*x + 15*x^2 - 11*x^3 - 9*x^4 - x^5) / (1 - 4*x - 8*x^3 - 4*x^4 + 2*x^5 + x^6). - Colin Barker, Jun 17 2018

A206867 Number of nX4 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

13, 169, 1153, 7675, 55063, 397221, 2841311, 20294131, 145066667, 1037297447, 7416956341, 53030329081, 379156174051, 2710908891177, 19382663085405, 138583595369137, 990854370992397, 7084476762966115, 50653072024038803
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 4 of A206871

Examples

			Some solutions for n=4
..0..0..1..0....1..0..0..1....0..1..1..0....0..0..1..0....0..1..1..0
..1..1..0..1....1..1..0..0....1..1..0..0....0..0..1..0....0..1..1..1
..1..0..0..1....1..0..1..0....0..1..0..0....1..1..0..0....0..1..0..1
..0..0..1..1....1..0..0..1....0..1..1..0....1..1..0..0....1..0..0..1
		

Formula

Empirical: a(n) = 7*a(n-1) -9*a(n-2) +59*a(n-3) +77*a(n-4) +95*a(n-5) +211*a(n-6) -354*a(n-7) -1120*a(n-8) -115*a(n-9) +1235*a(n-10) +539*a(n-11) -820*a(n-12) -522*a(n-13) -28*a(n-14) +7*a(n-15) +88*a(n-16) +54*a(n-17) +14*a(n-18) +13*a(n-19) +a(n-20) +a(n-21)

A206868 Number of n X 5 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

24, 576, 6139, 63866, 728935, 8373905, 95207761, 1080443638, 12271545504, 139429629845, 1584202545384, 17998962875523, 204492548469483, 2323314031658579, 26396091231602906, 299896697857816700
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2012

Keywords

Comments

Column 5 of A206871.

Examples

			Some solutions for n=4
..1..1..0..1..0....1..1..0..0..1....1..1..1..0..1....0..0..1..0..1
..1..0..1..0..0....1..1..0..1..1....1..0..1..1..0....1..1..0..1..0
..1..0..1..0..1....1..0..1..1..1....0..0..1..0..0....1..0..0..1..0
..1..0..1..1..0....0..0..1..1..0....0..1..0..0..1....0..0..1..0..0
		

Crossrefs

Cf. A206871.

Formula

Empirical: a(n) = 15*a(n-1) -77*a(n-2) +418*a(n-3) -191*a(n-4) -326*a(n-5) +11780*a(n-6) -15777*a(n-7) -112546*a(n-8) +30956*a(n-9) -485300*a(n-10) -179623*a(n-11) +12958992*a(n-12) +12158114*a(n-13) -88372551*a(n-14) -114504912*a(n-15) +308183446*a(n-16) +480083439*a(n-17) -621393177*a(n-18) -971856822*a(n-19) +785957180*a(n-20) +470385954*a(n-21) -709013883*a(n-22) +2000841599*a(n-23) +110590761*a(n-24) -3446166335*a(n-25) +1479989687*a(n-26) -1141679174*a(n-27) -2068575916*a(n-28) +4983487975*a(n-29) -407901884*a(n-30) +1053416686*a(n-31) +356294371*a(n-32) -3195205625*a(n-33) -1358482317*a(n-34) -3216369651*a(n-35) +368953540*a(n-36) +392356146*a(n-37) +2166065819*a(n-38) +3982572832*a(n-39) +2305733182*a(n-40) +4074870705*a(n-41) +1564223742*a(n-42) +2466908047*a(n-43) +436362259*a(n-44) +1332931456*a(n-45) -315550719*a(n-46) +710460963*a(n-47) -373415475*a(n-48) +286190697*a(n-49) -159276429*a(n-50) +65222985*a(n-51) -30196946*a(n-52) +3496748*a(n-53) -240024*a(n-54) -1660802*a(n-55) +860011*a(n-56) -218686*a(n-57) +67187*a(n-58) +44818*a(n-59) -23548*a(n-60) +8866*a(n-61) -3434*a(n-62) -131*a(n-63) +324*a(n-64) -102*a(n-65) +39*a(n-66) -a(n-67) -5*a(n-68) +a(n-69).

A206869 Number of nX6 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

44, 1936, 31529, 502864, 8942469, 159327093, 2805723059, 49382253588, 870161983686, 15335126811127, 270230133940648, 4761777405210821, 83908473333577949, 1478577785507810905, 26054511301483619894
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 6 of A206871

Examples

			Some solutions for n=4
..1..0..1..1..1..0....1..0..1..1..1..0....0..1..0..1..1..1....0..1..1..0..1..1
..0..1..0..1..1..0....0..1..1..1..0..1....0..0..1..1..0..1....0..1..0..1..1..0
..0..1..0..1..0..1....0..0..1..0..0..1....1..0..1..0..0..1....1..0..0..1..0..0
..0..0..1..1..0..0....0..0..1..0..1..0....0..1..0..0..1..0....0..0..1..1..0..0
		

A206870 Number of nX7 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

81, 6561, 165783, 4108471, 115505069, 3254925997, 90497940567, 2513905109615, 69918135147567, 1945015733467487, 54104019551291657, 1504951979516380911, 41861310528949142861, 1164403984942205341081, 32388853771860099448897
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 7 of A206871

Examples

			Some solutions for n=4
..0..1..1..1..1..0..1....0..1..1..1..0..0..1....1..0..1..1..1..0..0
..0..1..0..1..1..0..1....0..0..1..0..1..1..0....0..1..0..1..1..0..1
..1..1..0..0..1..0..1....0..0..1..0..1..1..0....0..1..0..1..0..1..1
..0..1..1..0..1..1..1....0..1..1..1..0..1..1....0..0..1..1..0..0..1
		

A206873 Number of 4Xn 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 889, 7675, 63866, 502864, 4108471, 33311703, 269021206, 2180747052, 17657728229, 142945674729, 1157610400394, 9373284938378, 75896278735065, 614558095591053, 4976204942982610, 40293442480994080, 326265843009762463
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Row 4 of A206871

Examples

			Some solutions for n=4
..0..1..1..0....0..1..0..0....0..0..1..1....0..0..1..1....1..0..0..1
..0..1..1..1....1..0..1..1....0..1..0..1....1..0..1..1....1..1..0..0
..0..1..0..1....1..0..0..1....0..1..0..0....0..0..1..0....1..0..1..0
..1..0..0..1....1..0..0..1....0..1..0..0....0..1..0..0....1..0..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +22*a(n-2) +195*a(n-3) +237*a(n-4) +211*a(n-5) -2946*a(n-6) -1034*a(n-7) -4204*a(n-8) +13726*a(n-9) +2298*a(n-10) +9852*a(n-11) -18860*a(n-12) -5516*a(n-13) -8002*a(n-14) +9398*a(n-15) +3229*a(n-16) +2616*a(n-17) -2128*a(n-18) -839*a(n-19) -433*a(n-20) +161*a(n-21) +68*a(n-22) +28*a(n-23)

A206874 Number of 5Xn 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

21, 441, 3967, 55063, 728935, 8942469, 115505069, 1476136671, 18751133599, 239558002631, 3055238118019, 38950706917793, 496876286463839, 6336882323606735, 80816445128377245, 1030742612403238579
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Row 5 of A206871

Examples

			Some solutions for n=4
..0..1..0..0....1..1..0..0....0..0..1..0....0..0..1..1....0..0..1..1
..0..1..1..1....0..0..1..1....0..1..1..1....1..0..1..0....0..0..1..0
..0..0..1..0....0..0..1..1....1..0..1..1....1..1..0..0....1..0..1..0
..1..0..1..0....0..0..1..0....1..0..0..1....1..1..0..0....0..1..1..0
..0..1..0..1....0..1..0..0....1..1..0..1....1..1..1..0....0..0..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) +48*a(n-2) +850*a(n-3) +269*a(n-4) -1283*a(n-5) -112004*a(n-6) +55620*a(n-7) -328963*a(n-8) +6225404*a(n-9) -5144830*a(n-10) +19504184*a(n-11) -179753913*a(n-12) +160248093*a(n-13) -452956137*a(n-14) +2970444667*a(n-15) -2483300908*a(n-16) +5290903713*a(n-17) -29217406372*a(n-18) +21179704633*a(n-19) -32922474476*a(n-20) +176676633881*a(n-21) -107878328813*a(n-22) +115228329766*a(n-23) -691831659906*a(n-24) +354865460342*a(n-25) -224391466494*a(n-26) +1832149406822*a(n-27) -797809297324*a(n-28) +185379567606*a(n-29) -3375546001386*a(n-30) +1269658609914*a(n-31) +155497400051*a(n-32) +4393034335280*a(n-33) -1452162122270*a(n-34) -598337059194*a(n-35) -4060066383053*a(n-36) +1190926493295*a(n-37) +740377635554*a(n-38) +2658470816096*a(n-39) -689039861347*a(n-40) -517168949858*a(n-41) -1223411447208*a(n-42) +272750757666*a(n-43) +220876526733*a(n-44) +390145740717*a(n-45) -71136809597*a(n-46) -58157675413*a(n-47) -84517177894*a(n-48) +11809121027*a(n-49) +9321899242*a(n-50) +12109980855*a(n-51) -1204432124*a(n-52) -883474981*a(n-53) -1105399073*a(n-54) +70798678*a(n-55) +46295560*a(n-56) +60187544*a(n-57) -2129908*a(n-58) -1176712*a(n-59) -1721408*a(n-60) +24928*a(n-61) +11072*a(n-62) +19200*a(n-63)

A206875 Number of 6 X n 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

37, 1369, 17737, 397221, 8373905, 159327093, 3254925997, 65503023421, 1306330464063, 26282885757023, 527346719280577, 10574042671627575, 212249791397406163, 4258527016456970551, 85440779581637659129
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2012

Keywords

Comments

Row 6 of A206871.

Examples

			Some solutions for n=4
..1..0..1..1....0..1..0..0....1..1..1..1....0..1..1..0....0..1..1..0
..0..1..1..0....0..1..0..1....0..1..1..1....1..0..1..0....0..0..1..1
..0..1..0..0....1..0..0..1....0..0..1..1....1..0..0..1....0..0..1..0
..1..0..0..1....1..0..0..1....1..0..1..0....1..0..0..1....0..0..1..0
..1..0..1..0....0..0..1..1....1..1..0..0....1..1..0..0....0..1..0..1
..1..1..1..0....0..1..1..0....0..1..0..0....1..1..1..0....0..1..0..1
		

Crossrefs

Cf. A206871.

A206876 Number of 7Xn 0..1 arrays avoiding 0 0 0 horizontally and 1 0 1 vertically.

Original entry on oeis.org

65, 4225, 78799, 2841311, 95207761, 2805723059, 90497940567, 2863087460903, 89499787923617, 2831117517162739, 89219013685261269, 2809084210921214817, 88579091493698602265, 2791355238871425908621, 87960857432849796359965
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Row 7 of A206871

Examples

			Some solutions for n=4
..0..1..0..0....1..0..1..1....1..1..1..1....0..1..1..1....1..0..0..1
..1..1..1..0....1..1..0..0....0..1..1..1....1..0..1..1....0..1..1..0
..1..1..0..1....1..1..0..0....0..0..1..1....1..0..1..0....0..0..1..0
..1..0..0..1....0..1..1..1....0..0..1..1....1..1..0..0....1..0..1..1
..0..0..1..1....0..1..0..1....0..0..1..1....0..1..0..0....1..1..0..1
..0..1..0..0....1..1..0..1....1..1..1..1....0..1..0..0....0..1..0..0
..1..1..0..0....1..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0
		
Showing 1-10 of 11 results. Next