This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206901 #38 May 17 2021 08:49:07 %S A206901 1,2,8,39,199,1027,5316,27539,142694,739416,3831589,19855045, %T A206901 102887673,533158028,2762794601,14316644946,74188042696,384438233215, %U A206901 1992137140383,10323141778619,53493935746148,277202543857995,1436447874880342,7443591492820888 %N A206901 Number of nonisomorphic graded posets with 0 of rank n with no 3-element antichain. %C A206901 We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. %H A206901 Vincenzo Librandi, <a href="/A206901/b206901.txt">Table of n, a(n) for n = 0..1000</a> %H A206901 Vladimir Retakh, Shirlei Serconek, and Robert Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert series of algebras associated to direct graphs and order homology</a>, arXiv 1010.6295 [math.RA], 2010-2011. %H A206901 Wikipedia, <a href="http://en.wikipedia.org/wiki/Graded_poset">Graded poset</a> %H A206901 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-10,3). %F A206901 a(n+3) = 7a(n+2) - 10a(n+1) + 3a(n), a(0)=1, a(1)=2, a(2)=8. %F A206901 G.f.: (1-5x+4x^2)/(1-7x+10x^2-3x^3). %t A206901 m = {{3, 3, 1, 0}, {1, 3, 0, 0}, {2, 3, 1, 0}, {6, 9, 2, 0}}; Table[MatrixPower[m, n][[4,3]], {n, 1, 40}] %o A206901 (Python) %o A206901 def a(n,adict={0:1,1:2,2:8}): %o A206901 if n in adict: %o A206901 return adict[n] %o A206901 adict[n]=7*a(n-1)-10*a(n-2)+3*a(n-3) %o A206901 return adict[n] %Y A206901 Cf. A124292 (counts with unique maximal element). %Y A206901 Cf. A025192, A206902 (adding a uniformity condition in the sense of the Retakh et al. paper with and without maximal elements). %K A206901 nonn,easy %O A206901 0,2 %A A206901 _David Nacin_, Feb 13 2012