A206911 Position of n-th partial sum of the harmonic series when all the partial sums are jointly ranked with the set {log(k+1)}; complement of A206912.
2, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30, 33, 36, 38, 41, 44, 47, 49, 52, 55, 58, 61, 63, 66, 69, 72, 74, 77, 80, 83, 86, 88, 91, 94, 97, 100, 102, 105, 108, 111, 113, 116, 119, 122, 125, 127, 130, 133, 136, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1
Keywords
Examples
Let S(n)=1+1/2+1/3+...+1/n and L(n)=log(n+1). Then L(1)<S(1)<L(2)<L(3)<S(2)<L(4)<L(5)<S(3)<L(6)<..., so that A206911=(2,5,8,...).
Programs
-
Mathematica
f[n_] := Sum[1/k, {k, 1, n}]; z = 300; g[n_] := N[Log[n + 1]]; c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}]; j = Sort[Union[c, s]]; p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]]; Flatten[Table[p[n], {n, 1, z}]] (* A206911 *) Flatten[Table[q[n], {n, 1, z}]] (* A206912 *)
Comments