A206916 Index of the least binary palindrome >=n; also the "upper inverse" of A006995.
1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 17, 17, 17, 17
Offset: 0
Examples
a(2)=3 since 3 is the index number of the least binary palindrome >= 2; a(5)=4 since 4 is the index number of the least binary palindrome >= 5; a(10)=7 since A006995(7)=15>=10, but A006995(6)=9<10, and so that, 7 is the index number of least binary palindrome >= 10;
Programs
-
Python
def A206916(n): l = n.bit_length() k = l+1>>1 return (n>>l-k)+(int(bin(n)[k+1:1:-1] or '0',2)<(n&(1<
Chai Wah Wu, Jul 24 2024
Formula
a(n)=min(m|A006995(m)>=n);
a(A006995(n))=n;
A006995(a(n))>=n, equality holds true iff n is a binary palindrome;
Let p=A206914(n), m=floor(log_2(p)) and p>2, then:
a(n)=(((5-(-1)^m)/2) + sum_{k=1..floor(m/2)} (floor(p/2^k) mod 2)/2^k))*2^floor(m/2);
a(n)=(1/2)*((6-(-1)^m)*2^floor(m/2)-1-sum_ {k=1..floor(m/2)} (-1)^floor(p/2^k)*2^(floor(m/2)-k)));
a(n)=(5-(-1)^m)*2^floor(m/2)/2-3*sum_{k=2..floor(m/2)} floor(p/2^k)*2^floor(m/2)/2^k)+(floor(p/2)*2^floor(m/2)/2-2*floor((p/2)*2^floor(m/2))*floor((m-1)/m+1/2).
Partial sums S(n) = sum_{k=0..n} a(k):
S(n) = 1+n*a(n)-A206920(a(n)-1), valid for n>0.
G.f.: g(x)=(x+x^2+x^3+sum_{j=1..infinity} x^(3*2^j)*(f_j(x)+f_j(1/x)))/(x(1-x)), where the f_j(x) are defined as follows:
f_1(x)=x, and for j>1,
f_j(x)=x^3*product_{k=1..floor((j-1)/2)} (1+x^b(j,k)), where b(j,k)=2^(floor((j-1)/2)-k)*((3+(-1)^j)*2^(2*k+1)+4) for k>1, and b(j,1)=(2+(-1)^j)*2^(floor((j-1)/2)+1).
Comments