cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206924 Number of contiguous palindromic bit patterns in the n-th binary palindrome.

Original entry on oeis.org

1, 1, 3, 4, 6, 6, 10, 9, 9, 9, 15, 13, 11, 11, 21, 18, 14, 16, 14, 14, 14, 16, 28, 24, 16, 16, 18, 18, 18, 18, 36, 31, 21, 19, 19, 19, 25, 21, 23, 23, 19, 21, 21, 21, 21, 25, 45, 39, 23, 25, 23, 23, 23, 21, 29, 29, 23, 21, 25, 25, 25, 27, 55, 48, 30, 26, 26
Offset: 1

Views

Author

Hieronymus Fischer, Mar 12 2012; additional formulas Jan 23 2013

Keywords

Comments

For a given number of places m a binary palindrome has at least 2*(m-1) + floor((m-3)/2) palindromic substrings. To a certain extent, this number indicates the minimal possible grade of symmetry (cf. A210926 and A217099).

Examples

			a(1) = a(2) = 1, since A006995(1) = 0 and A006995(2) = 1;
a(3) = 3, since A006995(3)=3=11_2 and so there are the following 3 palindromic bit patterns the left 1, the right 1 and 11;
a(10) = 9, since A006995(10) = 27 = 11011_2 and so there are the following 9 palindromic bit patterns: 1, 1, 0, 1, 1, 11, 11, 101, 11011.
		

Crossrefs

Programs

  • Mathematica
    palQ[w_] := w == Reverse@w; subs[w_] := Flatten[Table[Take[w, {j, i}], {i, Length@w}, {j,i}], 1]; seq={}; k=0; While[Length@seq < 100, u = IntegerDigits[k++,2]; If[palQ@u, AppendTo[seq, Length@Select[subs@u, palQ]]]]; seq (* Giovanni Resta, Feb 13 2013 *)
  • Smalltalk
    A206924
    "Calculates a(n)"
    ^self A006995 A206925

Formula

a(n) <= m*(m+1)/2, where m = 1+floor(log_2(A006995(n)), equality holds if n+1 is a power of 2 or n+1 is 3-times a power of 2.
a(n) >= 2*floor(log_2(A006995(n))).
a(n) = A206925(A006995(n)).
a(n) <= ((floor(log_2(n)) + floor(log_2(n/3)) + 3) * (floor(log_2(n)) + floor(log_2(n/3))) + 2)/2.
a(n) >= 2*(floor(log_2(n)) + floor(log_2(n/3))), n>1. Equality holds for n=4 and n=6, only.
With m = 1+floor(log_2(A006995(n)), n>1:
a(n) >= 2(m-1) + floor((m-3)/2). Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099.
a(n) >= (5m - 8)/2. Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099 with an even number of digits.
a(n) >= 3*floor(log_2(n)) + 2*floor(log_2(n/3)) - 2. Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099
a(n) >= |3*floor(log_2(n)) + 2*floor(log_2(n/3)) - 2|, n>1.
Asymptotic behavior:
a(n) = O(log(n)^2).
lim sup a(n)/log_2(n)^2 = 2, for n -> infinity.
lim inf a(n)/log_2(n) = 5, for n -> infinity.
lim inf (a(n) - 3*floor(log_2(n)) - 2*floor(log_2(n/3))) = -2, for n -> infinity.
lim inf a(n)/log_2(A006995(n)) = 5/2, for n -> infinity.
lim inf (2a(n) - 5*floor(log_2(A006995(n)))) = -3, for n -> infinity.