cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206926 Numbers such that the number of contiguous palindromic bit patterns in their binary representation is minimal (for a given number of places).

This page as a plain text file.
%I A206926 #19 Jan 03 2016 04:03:05
%S A206926 2,4,5,6,9,10,11,12,13,18,19,20,22,25,26,37,38,41,44,50,52,75,77,83,
%T A206926 89,101,105,150,154,166,178,203,211,300,308,333,357,406,422,601,617,
%U A206926 666,715,812,845,1202,1235,1332,1430,1625,1690,2405,2470,2665,2860,3250
%N A206926 Numbers such that the number of contiguous palindromic bit patterns in their binary representation is minimal (for a given number of places).
%C A206926 The only binary palindromes in the sequence are 5 and 9.
%C A206926 The sequence is infinite, since A206927 is an infinite subsequence.
%C A206926 a(n) is the least number > a(n-1) which have the same number of palindromic substrings than a(n-1). If such a number doesn't exist, a(n) is the least number with one additional digit which meets the minimal possible number of palindromic substrings for such increased number of digits.
%C A206926 The concatenation of the bit patterns of a(n) and the reversal of a(n) form a term of A217099. Same is true for the concatenation of the bit patterns of a(n) and the reversal of floor(a(n)/2).
%C A206926 For a given number of places m there are at least 2*(m-1) palindromic substrings in the binary representation (cf. A206925). According to the definition the sequence terms are those with minimal possible symmetry. In other words: numbers not in the sequence have a significantly 'higher grade of symmetry'.
%C A206926 The terms have characteristic bit patterns and can be subdivided into 6 different classes of minimal symmetry. There are the following basic bit patterns: '100101', '100110', '101001', '101100', '110010' and '110100' representing the numbers 37, 38, 41, 44, 50 and 52. Numbers which are not a concatenation of one of these basic bit patterns do not meet the minimality condition. Evidently, 37, 44 and 50 (=Set_1) are equivalent patterns, since they can be derived from each other by rotation of digits (bit rotation). Same is true for 38, 41 and 52 (=Set_2). These two sets reflect reverse (mirror inverted) patterns. Each of those numbers from these sets can be viewed as a substitute to represent minimal symmetry.
%C A206926 For a given number b>3 the number of contiguous palindromic bit patterns in its binary representation is minimal if and only if there exists a number c from Set_1 or Set_2 such that the bit pattern of b is contained in concatenated c bit patterns, or, what is equivalent, if and only if b is contained in the concatenated bit patterns of 37 or 41.
%C A206926 If b is a number with more than 4 binary digits such that the number of contiguous palindromic bit patterns in its binary representation is minimal, then b is contained in the concatenated bit patterns either of 37 or 41, but not in both.
%H A206926 Hieronymus Fischer, <a href="/A206926/b206926.txt">Table of n, a(n) for n = 1..2000</a>
%F A206926 a(n) = min(k > a(n-1) | A206925(k) = A206925(a(n-1))), if this minimum exists, else a(n) = min(k >= 2*2^floor(log(a(n-1))) | A206925(k) = min(A206925(j) | j >= 2*2^floor(log(a(n-1)))).
%F A206926 A206925(a(n)) = 2*floor(log_2(a(n))).
%F A206926 A070939(a(n)) = 4 + floor((n-4)/6), for n>4.
%F A206926 A206925(a(n)) = 6 + 2*floor((n-4)/6), for n>4.
%F A206926 Iteration formulas for k>0:
%F A206926 a(6(k+1)+4) = 2a(6k+4) + floor(37*2^(k+5)/63) mod 2.
%F A206926 a(6(k+1)+5) = 2a(6k+5) + floor(41*2^(k+1)/63) mod 2.
%F A206926 a(6(k+1)+6) = 2a(6k+6) + floor(41*2^(k+5)/63) mod 2.
%F A206926 a(6(k+1)+7) = 2a(6k+7) + floor(37*2^(k+2)/63) mod 2.
%F A206926 a(6(k+1)+8) = 2a(6k+8) + floor(37*2^(k+4)/63) mod 2.
%F A206926 a(6(k+1)+9) = 2a(6k+9) + floor(41*2^(k+4)/63) mod 2.
%F A206926 Calculation formulas for k>0:
%F A206926 a(6k+4) = floor((37*2^(k+4)/63) mod 2^(k+4).
%F A206926 a(6k+5) = floor((41*2^(k+6)/63) mod 2^(k+4).
%F A206926 a(6k+6) = floor((41*2^(k+4)/63) mod 2^(k+4).
%F A206926 a(6k+7) = floor((37*2^(k+7)/63) mod 2^(k+4).
%F A206926 a(6k+8) = floor((37*2^(k+9)/63) mod 2^(k+4).
%F A206926 a(6k+9) = floor((41*2^(k+9)/63) mod 2^(k+4).
%F A206926 With q(i) = 1 - 2*(floor((i+5)/6) - floor((i+4)/6) + floor((i+2)/6) + floor(i/6)),
%F A206926 this means q(i) = -1, 1, 1, -1, -1, 1, for i = 1..6,
%F A206926 p(i) = - 4 + 9*floor((i+5)/6) - 4*floor((i+4)/6) + 4*floor((i+3)/6) - 3*floor((i+2)/6)) + 2*floor((i+1)/6)),
%F A206926 this means p(i) = 5, 1, 5, 2, 4, 4, for i = 1..6,
%F A206926 k := k(n) = floor((n-4)/6),
%F A206926 j := j(n) = 1 + (n-4) mod 6,
%F A206926 we get the following formulas:
%F A206926 a(n+6) = 2*a(n) + floor((39+2*q(j))*2^(k+p(j))/63) mod 2, for n>9.
%F A206926 a(n+6) = 2*a(n) + b(k(n),j(n)), for n>9,
%F A206926 where b(k,j) is the 6x6-matrix:
%F A206926   (1 0 1 0 0 0)
%F A206926   (1 1 1 1 1 1)
%F A206926   (0 0 0 0 1 1)
%F A206926   (0 0 1 1 0 0)
%F A206926   (1 1 0 0 1 0)
%F A206926   (1 0 1 0 0 0).
%F A206926 a(n) = floor((39+2*q(j(n)))*2^(k(n)+p(j(n))+5)/63) mod 2^(k(n)+4), for n>4.
%F A206926 a(n) = (floor((39+2*q(j))*2^(6+p(j))/63) mod 32) * 2^(k-1) + (floor((39+2*q(j))*2^(6+p(j))/63) mod 64) * 2^(k mod 6 -1)*(2^(6*floor(k/6)) - 1)/63 + sum_{i=1..(k mod 6 - 1)} 2^(k mod 6 - 1 - i)*(floor((39+2*q(j))*2^(p(j)+i)/63) mod 2), for n>9.
%F A206926 a(n) = floor((39+2*q(j(n)))*2^(p(j(n))+floor((n+26)/6))/63) mod 2^floor((n+20)/6)), for n>4.
%F A206926 With: b(i) = floor((39+2*q(i))*2^(6+p(i))/63) mod 32, this means b(i) = 18, 19, 20, 22, 25, 26, for i = 1..6,
%F A206926 c(i) = (floor((39+2*q(i))*2^(6+p(i))/63) mod 64. This means c(i) = 50, 19, 52, 22, 25, 26, for i = 1..6:
%F A206926 a(n) = b(j)* 2^(k-1) + c(j)*2^(k mod 6 -1)*(2^(6*floor(k/6)) - 1)/63 + sum_{i=1..(k mod 6 - 1)} 2^(k mod 6 - 1 - i)*(floor(c(j)*2^i/63) mod 2), for n>9.
%F A206926 a(n) = floor(16*c(j)*2^floor((n+2)/6)/63) mod (8*2^floor((n+2)/6))), for n>4.
%F A206926 Asymptotic behavior:
%F A206926 a(n) = O(2^(n/6)).
%F A206926 lim inf a(n)/2^floor((n+2)/6) = 8*37/63 = 4.698412….
%F A206926 lim sup a(n)/2^floor((n+2)/6) = 8*52/63 = 6.603174….
%F A206926 lim inf a(n)/2^(n/6) = sqrt(2)*4*52/63 = 4.66914953….
%F A206926 lim sup a(n)/2^(n/6) = 2^(1/3)*8*37/63 = 5.91962906….
%F A206926 G.f. g(x) = x*(2 + 4x + 5x^2 + 6x^3 + 9x^4 + 10x^5 + 7x^6 + 3x^8 + 6x^9 + x^10 + x^13)/(1-2x^6) + (x^16*(1+x^2)(1+x^27) + x^22*(1-x^6)/(1-x) + x^32*(1-x^12)/((1-x^2)(1-x)) + x^47*(1+x^3)/(1-x))/(1-x^36).
%F A206926 Also: g(x) = x*(2 + 5x*(1-x^40) + 4x^2*(1+x^2+x^3-x^6-x^36-x^38-x^42)+ 2x^3*(1-x^3+x^6-x^7+x^39+x^43) - 6x^7*(1+x^4+x^38-x^40) - x^12*(1-x+x^7-x^8-x^10+x^15+x^16+x^18-x^20-x^23-x^24) - 3x^37*(1-x^6))/((1-x)(1+x^2)(1-x^9)(1+x^9)(1+x^18)).
%e A206926 a(2)=4=100_2 has 4 [=A206925(4)] contiguous palindromic bit patterns, this is the minimum value for binary numbers with 3 places. The other numbers with 3 places which meet that minimum value of 4 are 5 and 6.
%e A206926 a(7)=11=1011_2 has 6 [=A206925(11)] contiguous palindromic bit patterns, this is the minimum value for binary numbers with 4 places. The other numbers with 4 places which meet that minimum value of 6 are 9, 10, 12 and 13.
%e A206926 Examples to demonstrate the concatenation rule:
%e A206926 a(4) = 6 = 110_2 = (110010_2 truncated to 3 digits) = (50 truncated to 3 binary digits).
%e A206926 a(35) = 308 = 100110100_2 = (concatenation(100110, 100110) truncated to 9 digits) = (concatenation(38, 38) truncated to 9 binary digits).
%e A206926 a(94) = 307915 = 1001011001011001011_2 = (concatenation(101001, 101001, 101001, 101001) truncated to 19 digits) = (concatenation(41, 41, 41, 41) truncated to 19 binary digits).
%o A206926 (Smalltalk)
%o A206926 A206926
%o A206926 "Calculates a(n)"
%o A206926 | k j p q pArray qArray B n s |
%o A206926 n := self.
%o A206926 pArray := #(5 1 5 2 4 4).
%o A206926 qArray := #(-1 1 1 -1 -1 1).
%o A206926 B := #(2 4 5 6 9 10 11 12 13 18 19 20 22 25 26).
%o A206926 n < 10 ifTrue: [^s := B at: n].
%o A206926 k := (n - 4) // 6.
%o A206926 j := (n - 4) \\ 6 + 1.
%o A206926 p := pArray at: j.
%o A206926 q := qArray at: j.
%o A206926 s := (2 * q + 39) * (2 raisedToInteger: k + p + 5) // 63 \\ (2 raisedToInteger: k + 4).
%o A206926 ^s [by _Hieronymus Fischer_]
%Y A206926 Cf. A006995, A206923, A206924, A206925, A206927, A070939.
%Y A206926 Cf. A217100, A217101.
%K A206926 nonn,base
%O A206926 1,1
%A A206926 _Hieronymus Fischer_, Mar 24 2012; additional comments and formulas Jan 23 2013