cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206927 Minimal numbers of binary length n+1 such that the number of contiguous palindromic bit patterns in the binary representation is minimal.

Original entry on oeis.org

2, 4, 9, 18, 37, 75, 150, 300, 601, 1202, 2405, 4811, 9622, 19244, 38489, 76978, 153957, 307915, 615830, 1231660, 2463321, 4926642, 9853285, 19706571, 39413142, 78826284, 157652569, 315305138, 630610277, 1261220555
Offset: 1

Views

Author

Hieronymus Fischer, Mar 24 2012

Keywords

Comments

Subsequence of A206926.
From left to right, the binary representation of a(n) consists of a concatenation of the bit pattern 100101 (=37). If the number of places is not a multiple of 6, the least significant places are truncated. This leads to a simple linear recurrence.
Example: a(19)=615830=10010110010110_2=concatenate('100101','100101','10')

Examples

			a(3)=9=1001_2 has 6 [=A206925(9)] contiguous palindromic bit patterns. This is the minimum value for binary numbers with 4 places and 9 is the least number with this property.
a(9)=601=1001011001_2 has 18 [=A206925(601)] contiguous palindromic bit patterns. This is the minimum value for binary numbers with 10 places and 601 is the least number with this property.
		

Crossrefs

Formula

a(n) = 37*2^(1+n mod 6)*(2^(6*floor(n/6))-1)/63 + floor(37*2^(n mod 6)/2^5).
a(n) = floor((37*2^(n+1)/63)) mod 2^(n+1).
A206925(a(n)) = 2*floor(log_2(a(n))).
a(n+1) = 2a(n) + floor(37*2^(n+2)/63) mod 2.
G.f.: x*( 2+x^2+x^4+x^5-2*x^6 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2-x+1)*(1+x+x^2) ). - R. J. Mathar, Apr 02 2012
Also, g.f. x*(2+x^2+x^4+x^5-2*x^6)/((1-2*x)*(1-x^6)).

Extensions

Further formulas added by Hieronymus Fischer, Jan 13 2013