A206927 Minimal numbers of binary length n+1 such that the number of contiguous palindromic bit patterns in the binary representation is minimal.
2, 4, 9, 18, 37, 75, 150, 300, 601, 1202, 2405, 4811, 9622, 19244, 38489, 76978, 153957, 307915, 615830, 1231660, 2463321, 4926642, 9853285, 19706571, 39413142, 78826284, 157652569, 315305138, 630610277, 1261220555
Offset: 1
Examples
a(3)=9=1001_2 has 6 [=A206925(9)] contiguous palindromic bit patterns. This is the minimum value for binary numbers with 4 places and 9 is the least number with this property. a(9)=601=1001011001_2 has 18 [=A206925(601)] contiguous palindromic bit patterns. This is the minimum value for binary numbers with 10 places and 601 is the least number with this property.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,1,-2).
Formula
a(n) = 37*2^(1+n mod 6)*(2^(6*floor(n/6))-1)/63 + floor(37*2^(n mod 6)/2^5).
a(n) = floor((37*2^(n+1)/63)) mod 2^(n+1).
A206925(a(n)) = 2*floor(log_2(a(n))).
a(n+1) = 2a(n) + floor(37*2^(n+2)/63) mod 2.
G.f.: x*( 2+x^2+x^4+x^5-2*x^6 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2-x+1)*(1+x+x^2) ). - R. J. Mathar, Apr 02 2012
Also, g.f. x*(2+x^2+x^4+x^5-2*x^6)/((1-2*x)*(1-x^6)).
Extensions
Further formulas added by Hieronymus Fischer, Jan 13 2013
Comments