cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206942 Numbers of the form Phi_k(m) with k > 2 and |m| > 1.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 17, 21, 26, 31, 37, 43, 50, 57, 61, 65, 73, 82, 91, 101, 111, 121, 122, 127, 133, 145, 151, 157, 170, 183, 197, 205, 211, 226, 241, 257, 273, 290, 307, 325, 331, 341, 343, 362, 381, 401, 421, 442, 463, 485, 507, 521, 530, 547, 553
Offset: 1

Views

Author

Lei Zhou, Feb 13 2012

Keywords

Comments

Phi_k(m) denotes the k-th cyclotomic polynomial evaluated at m.
We can see that for any integer b, b = Phi_2(b-1). However, if we make k>2 and |m|>1, Phi(k,m) are always positive integers that do not traverse the positive integer set.
The Mathematica program can generate this sequence to arbitrary upper bound maxdata without user's chosen of parameters. The parameter determination part of this program is explained in A206864.

Examples

			a(1) = 3 = Phi_6(2) = Cyclotomic(6,2).
a(2) = 5 = Phi_4(2) = Cyclotomic(4,2).
...
a(15) = 61 = Phi_5(-3) = Cyclotomic(5,-3).
		

Crossrefs

Cf. A006511 for phiinv function in the Mathematica program.

Programs

  • Julia
    using Nemo
    function isA206942(n)
        if n < 3 return false end
        R, x = PolynomialRing(ZZ, "x")
        K = Int(floor(5.383*log(n)^1.161)) # Bounds from
        M = Int(floor(2*sqrt(n/3)))        # Fouvry & Levesque & Waldschmidt
        for k in 3:K
            c = cyclotomic(k, x)
            for m in 2:M
                n == subst(c, m) && return true
            end
        end
        return false
    end
    L = [n for n in 1:553 if isA206942(n)]; print(L) # Peter Luschny, Feb 21 2018
  • Mathematica
    phiinv[n_, pl_] :=  Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 560; max =  Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb =  2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], EulerPhi[#] <= eb &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an =  SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, a = Append[a, cc]]; i = 2;  While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
    (* Alternatively: *)
    isA206942[n_] := If[n < 3, Return[False],
        K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]];
        For[k = 3, k <= K, k++, For[x = 2, x <= M, x++,
            If[n == Cyclotomic[k, x], Return[True]]]];
        Return[False]
    ]; Select[Range[555], isA206942] (* Peter Luschny, Feb 21 2018 *)