cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206947 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank above 0.

Original entry on oeis.org

0, 0, 0, 2, 14, 70, 306, 1248, 4888, 18666, 70110, 260414, 959882, 3519232, 12854064, 46824210, 170243566, 618125238, 2242100898, 8126927456, 29442587720, 106626616954, 386046638142, 1397431266222, 5057790129274, 18304064121600, 66237312391776
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

Here, the term uniform used in the sense of Retakh, Serconek and Wilson. Graded is used in terms of Stanley's definition that all maximal chains have the same length n.

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Cf. A206948 (removing unique maximal element.)
Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element.)

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{8, -21, 20, -5}, {0, 0, 2, 14}, 40]]
  • Python
    def a(n,adict={0:0,1:0,2:0,3:2,4:14}):
        if n in adict:
            return adict[n]
        adict[n]=8*a(n-1)-21*a(n-2)+20*a(n-3)-5*a(n-4)
        return adict[n]

Formula

a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), a(1)=0, a(2)=0, a(3)=2, a(4)=14.
G.f.: (2*(1-x)*x^3)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = A081567(n-1) - A001906(n).