A206947 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank above 0.
0, 0, 0, 2, 14, 70, 306, 1248, 4888, 18666, 70110, 260414, 959882, 3519232, 12854064, 46824210, 170243566, 618125238, 2242100898, 8126927456, 29442587720, 106626616954, 386046638142, 1397431266222, 5057790129274, 18304064121600, 66237312391776
Offset: 0
References
- R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
Links
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Crossrefs
Programs
-
Mathematica
Join[{0}, LinearRecurrence[{8, -21, 20, -5}, {0, 0, 2, 14}, 40]]
-
Python
def a(n,adict={0:0,1:0,2:0,3:2,4:14}): if n in adict: return adict[n] adict[n]=8*a(n-1)-21*a(n-2)+20*a(n-3)-5*a(n-4) return adict[n]
Comments