This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206948 #35 Sep 08 2019 17:27:21 %S A206948 0,0,0,2,19,131,791,4446,23913,124892,638878,3218559,16027375, %T A206948 79093773,387540260,1887974063,9154751912,44221373872,212931964415, %U A206948 1022594028515,4900116587043,23437066655010,111923110602497 %N A206948 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0. %C A206948 We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. Here, the term uniform used in the sense of Retakh, Serconek and Wilson. %D A206948 R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100. %H A206948 Vincenzo Librandi, <a href="/A206948/b206948.txt">Table of n, a(n) for n = 0..200</a> %H A206948 V. Retakh, S. Serconek, and R. Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert Series of Algebras Associated to Directed Graphs and Order Homology</a>, arXiv:1010.6295 [math.RA], 2010-2011. %H A206948 Wikipedia, <a href="http://en.wikipedia.org/wiki/Graded_poset">Graded poset</a> %H A206948 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11, -40, 55, -30, 6). %F A206948 a(n) = 11*a(n-1) - 40*a(n-2) + 55*a(n-3) - 30*a(n-4) + 6*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=19, a(5)=131. %F A206948 G.f.: (x^3*(2 - 3*x + 2*x^2))/((1 - 6*x + 6*x^2)*(1 - 5*x + 4*x^2 - x^3)). %t A206948 LinearRecurrence[{11, -40, 55, -30, 6}, {0, 0, 0, 2, 19, 131}, 23] (* _David Nacin_, Feb 29 2012; a(0) added by _Georg Fischer_, Apr 03 2019 *) %o A206948 (Python) %o A206948 def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:19, 5:131}): %o A206948 if n in adict: %o A206948 return adict[n] %o A206948 adict[n]=11*a(n-1)-40*a(n-2)+55*a(n-3)-30*a(n-4)+6*a(n-5) %o A206948 return adict[n] %o A206948 for n in range(0,40): %o A206948 print(a(n)) %Y A206948 a(n) = A086405(n) - A012781(n+1). %Y A206948 Cf. A206947 (unique maximal element added). %Y A206948 Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element). %K A206948 nonn,easy %O A206948 0,4 %A A206948 _David Nacin_, Feb 13 2012