A206981 Number of n X 2 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.
4, 16, 36, 100, 256, 676, 1764, 4624, 12100, 31684, 82944, 217156, 568516, 1488400, 3896676, 10201636, 26708224, 69923044, 183060900, 479259664, 1254718084, 3284894596, 8599965696, 22515002500, 58945041796, 154320122896, 404015326884
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1....0..0....0..0....0..0....1..1....0..1....1..1....0..1....1..0....0..0 ..0..1....0..1....1..0....1..0....1..1....1..1....1..1....1..0....0..1....1..1 ..0..0....1..1....1..1....1..0....1..1....1..0....1..1....1..0....0..1....1..1 ..1..0....1..1....0..1....1..0....1..1....1..0....0..0....1..0....1..0....0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). G.f.: -4*x*(-1-2*x+x^2) / ( (1+x)*(x^2-3*x+1) ).
Empirical: a(n) = (A080097(n)+1)*4. - Martin Ettl, Nov 13 2012