A206982 Number of n X 3 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.
6, 36, 58, 158, 420, 1066, 2754, 7140, 18430, 47602, 123028, 317870, 821262, 2121988, 5482746, 14166078, 36601876, 94570810, 244348930, 631340852, 1631238222, 4214740594, 10889910564, 28136999454, 72699470734, 187838545012
Offset: 1
Keywords
Examples
Some solutions for n=4: 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A206987.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - 2*a(n-5) for n>7.
Empirical g.f.: 2*x*(1 - x)*(3 + 15*x + 5*x^2 + 2*x^3 - 8*x^4 - 8*x^5) / (1 - 2*x - x^2 - 2*x^3 + x^4 + 2*x^5). - Colin Barker, Jun 17 2018
Comments