cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A206981 Number of n X 2 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

4, 16, 36, 100, 256, 676, 1764, 4624, 12100, 31684, 82944, 217156, 568516, 1488400, 3896676, 10201636, 26708224, 69923044, 183060900, 479259664, 1254718084, 3284894596, 8599965696, 22515002500, 58945041796, 154320122896, 404015326884
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Examples

			Some solutions for n=4
..1..1....0..0....0..0....0..0....1..1....0..1....1..1....0..1....1..0....0..0
..0..1....0..1....1..0....1..0....1..1....1..1....1..1....1..0....0..1....1..1
..0..0....1..1....1..1....1..0....1..1....1..0....1..1....1..0....0..1....1..1
..1..0....1..1....0..1....1..0....1..1....1..0....0..0....1..0....1..0....0..0
		

Crossrefs

Column 2 of A206987.
Cf. A080097.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). G.f.: -4*x*(-1-2*x+x^2) / ( (1+x)*(x^2-3*x+1) ).
Empirical: a(n) = (A080097(n)+1)*4. - Martin Ettl, Nov 13 2012

A206982 Number of n X 3 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

6, 36, 58, 158, 420, 1066, 2754, 7140, 18430, 47602, 123028, 317870, 821262, 2121988, 5482746, 14166078, 36601876, 94570810, 244348930, 631340852, 1631238222, 4214740594, 10889910564, 28136999454, 72699470734, 187838545012
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 3 of A206987.

Examples

			Some solutions for n=4:
  1 0 0    0 0 0    1 0 0    0 0 1    0 1 1    0 1 1    1 1 0
  1 1 1    1 0 0    1 0 0    1 1 1    0 0 0    0 0 1    0 0 0
  1 1 1    1 0 0    1 1 0    1 1 1    0 0 0    0 0 0    0 0 0
  1 0 0    0 0 0    1 1 0    0 0 0    1 1 0    0 0 0    0 0 1
		

Crossrefs

Cf. A206987.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - 2*a(n-5) for n>7.
Empirical g.f.: 2*x*(1 - x)*(3 + 15*x + 5*x^2 + 2*x^3 - 8*x^4 - 8*x^5) / (1 - 2*x - x^2 - 2*x^3 + x^4 + 2*x^5). - Colin Barker, Jun 17 2018

A206983 Number of nX4 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

10, 100, 158, 556, 1866, 5804, 18528, 59888, 191484, 612874, 1966402, 6301118, 20187672, 64705162, 207369486, 664535672, 2129687696, 6825166670, 21872797724, 70096742330, 224642588748, 719921959060, 2307166259316, 7393882758084
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 4 of A206987

Examples

			Some solutions for n=4
..1..0..0..1....1..1..1..1....0..0..1..1....1..1..1..0....1..1..1..1
..0..0..0..1....1..1..1..1....1..1..1..1....0..1..1..0....0..1..1..1
..0..0..0..0....1..1..1..0....1..1..1..1....0..1..1..1....0..1..1..1
..1..0..0..0....1..0..0..0....0..0..0..0....1..1..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) -4*a(n-2) +10*a(n-3) -18*a(n-4) +8*a(n-5) -16*a(n-6) -4*a(n-7) -3*a(n-8) +21*a(n-9) +13*a(n-10) -12*a(n-11) for n>13

A206984 Number of nX5 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

16, 256, 420, 1866, 7500, 27762, 106110, 413526, 1583234, 6065840, 23380612, 89904320, 345225042, 1327292244, 5103379268, 19613888918, 75392090306, 289821707064, 1114041030214, 4282214237068, 16460713051026, 63274053473750
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 5 of A206987

Examples

			Some solutions for n=4
..0..0..1..1..1....1..1..1..0..0....0..0..0..1..1....0..0..1..1..0
..1..1..1..1..0....1..1..0..0..0....1..0..0..0..0....1..1..1..1..0
..1..1..1..1..0....1..1..0..0..0....1..0..0..0..0....1..1..1..1..0
..1..1..1..0..0....1..0..0..0..0....1..0..0..1..1....0..1..1..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) -7*a(n-2) +17*a(n-3) -27*a(n-4) +2*a(n-5) +47*a(n-6) -201*a(n-7) -179*a(n-8) +23*a(n-9) +255*a(n-10) -331*a(n-11) -206*a(n-12) +691*a(n-13) +704*a(n-14) -353*a(n-15) -775*a(n-16) +88*a(n-17) -15*a(n-18) +86*a(n-19) -192*a(n-20) +15*a(n-21) +64*a(n-22) +40*a(n-23) +8*a(n-24) -10*a(n-25) for n>27

A206985 Number of nX6 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

26, 676, 1066, 5804, 27762, 119224, 539576, 2511348, 11347860, 51289536, 234531890, 1067836614, 4847382862, 22063872636, 100447611768, 456793739872, 2077973014524, 9455702551722, 43017605222256, 195696521320564
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 6 of A206987

Examples

			Some solutions for n=4
..0..1..1..0..0..1....1..1..1..0..0..1....1..0..0..1..1..1....0..1..1..0..0..0
..0..1..1..0..0..1....0..1..1..0..0..1....0..0..0..0..0..0....1..1..1..1..1..1
..1..1..1..0..0..0....0..1..1..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1
..1..1..1..0..0..0....1..1..1..0..0..0....0..1..1..0..0..1....1..1..1..0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) -32*a(n-2) +93*a(n-3) -259*a(n-4) +478*a(n-5) -534*a(n-6) -93*a(n-7) +36*a(n-8) +1556*a(n-9) +294*a(n-10) -3651*a(n-11) +8447*a(n-12) -690*a(n-13) -5674*a(n-14) +6636*a(n-15) +51944*a(n-16) -50911*a(n-17) -34119*a(n-18) -76215*a(n-19) +126430*a(n-20) +211178*a(n-21) +3381*a(n-22) -301486*a(n-23) -330384*a(n-24) +322877*a(n-25) +298439*a(n-26) -95421*a(n-27) -522981*a(n-28) -40984*a(n-29) +78447*a(n-30) +421368*a(n-31) +154765*a(n-32) -197659*a(n-33) -37604*a(n-34) -116015*a(n-35) +191027*a(n-36) +83557*a(n-37) +958*a(n-38) -67177*a(n-39) -70907*a(n-40) -22943*a(n-41) +12080*a(n-42) +7672*a(n-43) +10360*a(n-44) -1803*a(n-45) +294*a(n-46) -875*a(n-47) +109*a(n-48) -48*a(n-49) +4*a(n-50) for n>53

A206986 Number of nX7 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

42, 1764, 2754, 18528, 106110, 539576, 2926752, 16410772, 88554260, 477698908, 2619259634, 14280032054, 77486975514, 422191223508, 2301460838104, 12521989484576, 68163339893844, 371278088395874, 2021451066772812
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 7 of A206987

Examples

			Some solutions for n=4
..0..1..1..1..1..0..0....0..0..1..1..0..0..1....1..0..0..1..1..1..0
..1..1..1..1..1..0..0....0..1..1..1..0..0..0....0..0..0..1..1..1..0
..1..1..1..1..1..0..0....1..1..1..1..0..0..0....0..0..0..1..1..0..0
..1..1..1..1..1..1..0....1..1..1..0..0..0..1....1..0..0..1..1..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) -57*a(n-2) +204*a(n-3) -712*a(n-4) +1629*a(n-5) -2013*a(n-6) -1350*a(n-7) +8857*a(n-8) -2692*a(n-9) +40341*a(n-10) -184639*a(n-11) +267833*a(n-12) -342433*a(n-13) +259406*a(n-14) +82163*a(n-15) +2551670*a(n-16) -1584198*a(n-17) -11211930*a(n-18) +8263359*a(n-19) -650200*a(n-20) +75417795*a(n-21) -127353208*a(n-22) +98617983*a(n-23) -294853523*a(n-24) +293977586*a(n-25) +84609725*a(n-26) -1982930*a(n-27) -37710696*a(n-28) -995272981*a(n-29) +3231800062*a(n-30) -1273045117*a(n-31) -1553881483*a(n-32) -5866183982*a(n-33) +4867153776*a(n-34) +6843320108*a(n-35) -6774230192*a(n-36) -9332999003*a(n-37) +4369010024*a(n-38) +20963390934*a(n-39) +12206097010*a(n-40) -28409016089*a(n-41) -23333909730*a(n-42) +53550932578*a(n-43) +3481744833*a(n-44) -22681916085*a(n-45) -79404231597*a(n-46) +26112200963*a(n-47) +70779977384*a(n-48) -27744834069*a(n-49) -67989382455*a(n-50) +25768829849*a(n-51) +76157982282*a(n-52) +38333688138*a(n-53) -66879893432*a(n-54) -31806232924*a(n-55) +50580641882*a(n-56) -10727919156*a(n-57) +18055489357*a(n-58) -15764909685*a(n-59) +617435579*a(n-60) +857583968*a(n-61) -17821204296*a(n-62) +16562222210*a(n-63) -34783447*a(n-64) -4660345275*a(n-65) +346004180*a(n-66) -2701874206*a(n-67) +3769811175*a(n-68) +185792729*a(n-69) -1834618236*a(n-70) +1190435781*a(n-71) -362298763*a(n-72) -288436772*a(n-73) +286127591*a(n-74) +67688678*a(n-75) -111910582*a(n-76) -1679570*a(n-77) -3663805*a(n-78) +6738647*a(n-79) +7719712*a(n-80) -1187115*a(n-81) +477243*a(n-82) -606196*a(n-83) -270152*a(n-84) +60080*a(n-85) +1536*a(n-86) for n>92

A206980 Number of n X n 0..1 arrays avoiding the patterns 0 1 0 or 1 0 1 in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

2, 16, 58, 556, 7500, 119224, 2926752, 111202694, 5582239354, 398193149976, 43178426815216, 6623459579619334, 1414003622686654366, 443957184641073369216
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Diagonal of A206987

Examples

			Some solutions for n=4
..1..0..0..0....0..1..1..1....1..0..0..1....1..1..0..0....1..1..0..0
..0..0..0..0....1..1..1..0....0..0..0..1....0..0..0..0....1..0..0..0
..0..0..0..1....1..1..1..0....0..0..0..1....0..0..0..0....0..0..0..0
..1..1..1..1....0..1..1..0....1..0..0..1....1..0..0..0....0..0..0..1
		
Showing 1-7 of 7 results.