A207021 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
13, 169, 624, 1586, 3315, 6123, 10374, 16484, 24921, 36205, 50908, 69654, 93119, 122031, 157170, 199368, 249509, 308529, 377416, 457210, 549003, 653939, 773214, 908076, 1059825, 1229813, 1419444, 1630174, 1863511, 2121015, 2404298, 2715024
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0..0....0..0..1..0..0....1..1..1..1..1....0..0..1..0..1 ..0..1..0..0..1....0..0..1..0..0....1..1..1..0..1....1..1..0..1..0 ..0..1..0..0..1....0..0..1..0..0....0..1..0..0..1....0..1..0..1..0 ..0..1..0..0..1....0..0..1..0..0....0..1..0..0..1....0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (13/6)*n^4 + 13*n^3 + (52/3)*n^2 - (39/2)*n.
Empirical G.f.: 13*x*(1+8*x-7*x^2+2*x^3)/(1-x)^5. [Colin Barker, May 22 2012]
Comments