cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207025 Number of 2 X n 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

4, 16, 36, 81, 169, 324, 625, 1156, 2116, 3844, 6889, 12321, 21904, 38809, 68644, 121104, 213444, 375769, 660969, 1162084, 2042041, 3587236, 6300100, 11062276, 19421649, 34093921, 59845696, 105042001, 184362084, 323568144, 567868900
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Row 2 of A207024.

Examples

			Some solutions for n=4:
  1 1 1 1    1 1 1 1    1 0 0 1    0 0 1 0    0 1 0 0
  0 1 0 1    1 1 1 1    0 1 0 0    0 1 0 1    0 0 1 0
		

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 4*a(n-4) + 2*a(n-5) + a(n-7) + a(n-9) - a(n-10).
Empirical g.f.: x*(4 + 8*x - 3*x^3 + 3*x^4 - 3*x^5 + x^6 - x^7 + x^8 - x^9) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 + x - x^3)*(1 - x^2 - x^3)). - Colin Barker, Feb 17 2018

A207026 Number of 3Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 90, 252, 624, 1350, 3025, 6256, 12788, 25792, 50630, 99012, 190920, 365041, 694038, 1309524, 2460150, 4599952, 8565768, 15899422, 29415965, 54278252, 99908040, 183482116, 336298170, 615243752, 1123669472, 2049072321, 3731220822
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 3 of A207024

Examples

			Some solutions for n=4
..1..0..0..1....0..1..0..1....0..0..1..0....1..1..1..0....1..1..0..0
..0..1..0..0....0..1..0..1....1..0..1..0....0..0..1..0....1..1..1..1
..0..1..0..0....0..1..0..1....0..0..1..0....0..0..1..0....1..1..0..0
		

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) -5*a(n-3) -10*a(n-4) +12*a(n-5) +11*a(n-6) +a(n-7) -15*a(n-8) +a(n-9) -7*a(n-10) +3*a(n-11) +3*a(n-12) +9*a(n-13) -4*a(n-14) -2*a(n-16) -a(n-18) +a(n-19)

A207019 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 90, 558, 3315, 16038, 95900, 492932, 2542374, 14009768, 70576726, 371721351, 1947251540, 9924535935, 51877222492, 266862076008, 1370454630930, 7087023247175, 36312119188998, 186625648529320, 958786992765737
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Diagonal of A207024

Examples

			Some solutions for n=4
..1..1..0..0....1..1..1..1....1..1..0..0....1..1..0..0....1..0..1..0
..1..1..0..1....1..1..1..1....1..1..0..0....0..0..1..0....0..1..0..0
..1..0..0..1....1..1..0..1....0..1..0..0....0..0..1..0....0..1..0..0
..1..0..0..1....0..1..0..1....0..1..0..0....0..0..1..0....0..1..0..0
		

A207020 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 252, 558, 1035, 1719, 2646, 3852, 5373, 7245, 9504, 12186, 15327, 18963, 23130, 27864, 33201, 39177, 45828, 53190, 61299, 70191, 79902, 90468, 101925, 114309, 127656, 142002, 157383, 173835, 191394, 210096, 229977, 251073, 273420, 297054
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 4 of A207024.

Examples

			Some solutions for n=4:
  1 1 1 1      1 0 0 1      1 1 0 0      1 0 1 0      1 0 0 1
  1 1 1 1      0 1 0 0      1 1 0 0      1 0 1 0      1 1 0 0
  1 1 0 1      0 1 0 0      0 1 0 0      1 0 1 0      1 1 0 0
  0 1 0 1      0 1 0 0      0 1 0 0      1 0 1 0      1 1 0 0
		

Crossrefs

Cf. A207024.

Formula

Empirical: a(n) = 6*n^3 + (27/2)*n^2 - (21/2)*n.
Conjectures from Colin Barker, Jun 17 2018: (Start)
G.f.: 9*x*(1 + 5*x - 2*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A207021 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

13, 169, 624, 1586, 3315, 6123, 10374, 16484, 24921, 36205, 50908, 69654, 93119, 122031, 157170, 199368, 249509, 308529, 377416, 457210, 549003, 653939, 773214, 908076, 1059825, 1229813, 1419444, 1630174, 1863511, 2121015, 2404298, 2715024
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 5 of A207024

Examples

			Some solutions for n=4
..1..0..1..0..0....0..0..1..0..0....1..1..1..1..1....0..0..1..0..1
..0..1..0..0..1....0..0..1..0..0....1..1..1..0..1....1..1..0..1..0
..0..1..0..0..1....0..0..1..0..0....0..1..0..0..1....0..1..0..1..0
..0..1..0..0..1....0..0..1..0..0....0..1..0..0..1....0..1..0..1..0
		

Formula

Empirical: a(n) = (13/6)*n^4 + 13*n^3 + (52/3)*n^2 - (39/2)*n.
Empirical G.f.: 13*x*(1+8*x-7*x^2+2*x^3)/(1-x)^5. [Colin Barker, May 22 2012]

A207022 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

18, 324, 1350, 3726, 8280, 16038, 28224, 46260, 71766, 106560, 152658, 212274, 287820, 381906, 497340, 637128, 804474, 1002780, 1235646, 1506870, 1820448, 2180574, 2591640, 3058236, 3585150, 4177368, 4840074, 5578650, 6398676, 7305930
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 6 of A207024

Examples

			Some solutions for n=4
..1..1..1..1..1..1....1..0..1..0..0..1....0..1..0..1..0..0....0..1..0..1..0..0
..0..0..1..0..1..0....0..1..0..0..1..0....0..1..0..0..1..0....0..1..0..1..0..0
..0..0..1..0..1..0....0..1..0..0..1..0....0..1..0..0..1..0....0..1..0..1..0..0
..0..0..1..0..1..0....0..1..0..0..1..0....0..1..0..0..1..0....0..1..0..1..0..0
		

Formula

Empirical: a(n) = (33/4)*n^4 + (45/2)*n^3 + (75/4)*n^2 - (63/2)*n.
Empirical G.f.: 18*x*(1+13*x-5*x^2+2*x^3)/(1-x)^5. [Colin Barker, May 22 2012]

A207023 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

25, 625, 3025, 9450, 23400, 49925, 95900, 170300, 284475, 452425, 691075, 1020550, 1464450, 2050125, 2808950, 3776600, 4993325, 6504225, 8359525, 10614850, 13331500, 16576725, 20424000, 24953300, 30251375, 36412025, 43536375, 51733150
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Column 7 of A207024

Examples

			Some solutions for n=4
..0..0..1..0..1..0..1....0..1..0..0..1..0..0....1..0..0..1..0..1..0
..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
		

Formula

Empirical: a(n) = (55/24)*n^5 + (75/4)*n^4 + (275/8)*n^3 + (75/4)*n^2 - (295/6)*n.
Empirical G.f.: 25*x*(1+19*x-14*x^2+7*x^3-2*x^4)/(1-x)^6. [Colin Barker, May 22 2012]

A207027 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 168, 558, 1586, 3726, 9450, 21318, 47518, 104470, 220531, 464202, 957412, 1949906, 3940218, 7868976, 15610980, 30742563, 60142488, 117047084, 226575095, 436635184, 837955970, 1601924662, 3051891570, 5795441060, 10972726928
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 4 of A207024

Examples

			Some solutions for n=4
..1..0..1..0....1..0..1..0....1..1..0..1....1..0..1..0....0..0..1..0
..1..0..1..0....0..0..1..0....1..0..0..1....0..1..0..0....0..0..1..0
..1..0..1..0....0..0..1..0....1..0..0..1....0..1..0..0....0..0..1..0
..1..0..1..0....0..0..1..0....1..0..0..1....0..1..0..0....0..0..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) -11*a(n-3) -13*a(n-4) +39*a(n-5) +29*a(n-6) -35*a(n-7) -84*a(n-8) +25*a(n-9) +53*a(n-10) +48*a(n-11) -15*a(n-12) +6*a(n-13) -69*a(n-14) -25*a(n-15) +a(n-16) +54*a(n-17) +2*a(n-18) +16*a(n-19) -12*a(n-20) -6*a(n-21) -15*a(n-22) +6*a(n-23) +3*a(n-25) +a(n-27) -a(n-28)

A207028 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 270, 1035, 3315, 8280, 23400, 56814, 136114, 322834, 725005, 1627260, 3560880, 7664285, 16349062, 34340640, 71524992, 147574233, 301825437, 613141606, 1236720905, 2479598284, 4944012260, 9806225404, 19359765906
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 5 of A207024

Examples

			Some solutions for n=4
..1..1..0..1....0..0..1..0....0..1..0..1....1..0..1..0....1..0..0..1
..0..0..1..0....0..0..1..0....1..0..0..1....1..0..1..0....0..1..0..0
..0..0..1..0....0..0..1..0....1..0..0..1....0..0..1..0....0..1..0..0
..0..0..1..0....0..0..1..0....1..0..0..1....0..0..1..0....0..1..0..0
..0..0..1..0....0..0..1..0....1..0..0..1....0..0..1..0....0..1..0..0
		

Formula

Empirical: a(n) = 5*a(n-1) -2*a(n-2) -18*a(n-3) -9*a(n-4) +85*a(n-5) +30*a(n-6) -158*a(n-7) -196*a(n-8) +244*a(n-9) +340*a(n-10) -8*a(n-11) -441*a(n-12) -159*a(n-13) -32*a(n-14) +240*a(n-15) +249*a(n-16) +307*a(n-17) -270*a(n-18) -286*a(n-19) -225*a(n-20) +125*a(n-21) +54*a(n-22) +218*a(n-23) +37*a(n-24) -9*a(n-25) -126*a(n-26) -10*a(n-27) -30*a(n-28) +26*a(n-29) +10*a(n-30) +22*a(n-31) -8*a(n-32) -4*a(n-34) -a(n-36) +a(n-37)

A207029 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 396, 1719, 6123, 16038, 49925, 129302, 329498, 836938, 1984447, 4716834, 10888212, 24623818, 55173270, 121321500, 264139722, 568757951, 1211623656, 2560468834, 5364327387, 11156813446, 23048288350, 47308658140, 96551671749
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 6 of A207024

Examples

			Some solutions for n=4
..1..1..1..0....1..0..0..1....0..0..1..0....0..1..0..1....0..1..0..0
..0..1..0..0....1..1..0..1....0..1..0..0....0..1..0..1....0..1..0..1
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..0..0....0..1..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) -5*a(n-2) -25*a(n-3) +5*a(n-4) +146*a(n-5) -21*a(n-6) -400*a(n-7) -230*a(n-8) +955*a(n-9) +807*a(n-10) -997*a(n-11) -2055*a(n-12) +345*a(n-13) +2000*a(n-14) +1561*a(n-15) -601*a(n-16) -1120*a(n-17) -2255*a(n-18) -690*a(n-19) +1257*a(n-20) +3043*a(n-21) +570*a(n-22) -650*a(n-23) -1885*a(n-24) -921*a(n-25) -654*a(n-26) +1200*a(n-27) +910*a(n-28) +655*a(n-29) -421*a(n-30) -229*a(n-31) -520*a(n-32) -45*a(n-33) +25*a(n-34) +240*a(n-35) +25*a(n-36) +50*a(n-37) -45*a(n-38) -15*a(n-39) -30*a(n-40) +10*a(n-41) +5*a(n-43) +a(n-45) -a(n-46)
Showing 1-10 of 11 results. Next