cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207034 Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).

This page as a plain text file.
%I A207034 #94 Feb 04 2014 08:57:02
%S A207034 0,1,2,2,3,3,4,3,4,4,5,4,5,5,6,4,5,5,6,6,6,7,5,6,6,7,6,7,7,8,5,6,6,7,
%T A207034 7,7,8,7,8,8,8,9,6,7,7,8,7,8,8,9,8,8,9,9,9,10,6,7,7,8,8,8,9,8,9,9,9,
%U A207034 10,8,9,9,10,9,10,10,10,11,7,8,8,9,8,9
%N A207034 Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).
%C A207034 a(n) is also the column number in which is located the part of size 1 in the n-th zone of the tail of the last section of the set of partitions of k in colexicographic order, minus the column number in which is located the part of size 1 in the first row of the same tail, when k -> infinity (see example). For the definition of "section" see A135010.
%H A207034 Alois P. Heinz, <a href="/A207034/b207034.txt">Table of n, a(n) for n = 1..10143</a>
%F A207034 a(n) = t(n) - A194548(n), if n >= 2, where t(n) is the n-th element of the following sequence: triangle read by rows in which row n lists n repeated k times, where k = A187219(n).
%F A207034 a(n) = A000120(A194602(n-1)) = A000120(A228354(n)-1).
%F A207034 a(n) = i - A193173(i,n), i >= 1, 1<=n<=A000041(i).
%e A207034 Illustration of initial terms, n = 1..15. Consider the last 15 rows of the tail of the last section of the set of partitions in colexicographic order of any integer >= 8. The tail contains at least A000041(8-1) = 15 parts of size 1. a(n) is also the number of dots in the n-th row of the diagram.
%e A207034 ----------------------------------
%e A207034 n      Tail                  a(n)
%e A207034 ----------------------------------
%e A207034 15        1 . . . . . .       6
%e A207034 14          1 . . . . .       5
%e A207034 13          1 . . . . .       5
%e A207034 12            1 . . . .       4
%e A207034 11          1 . . . . .       5
%e A207034 10            1 . . . .       4
%e A207034 9             1 . . . .       4
%e A207034 8               1 . . .       3
%e A207034 7             1 . . . .       4
%e A207034 6               1 . . .       3
%e A207034 5               1 . . .       3
%e A207034 4                 1 . .       2
%e A207034 3                 1 . .       2
%e A207034 2                   1 .       1
%e A207034 1                     1       0
%e A207034 ----------------------------------
%e A207034 Written as a triangle:
%e A207034 0;
%e A207034 1;
%e A207034 2;
%e A207034 2,3;
%e A207034 3,4;
%e A207034 3,4,4,5;
%e A207034 4,5,5,6;
%e A207034 4,5,5,6,6,6,7;
%e A207034 5,6,6,7,6,7,7,8;
%e A207034 5,6,6,7,7,7,8,7,8,8,8,9;
%e A207034 6,7,7,8,7,8,8,9,8,8,9,9,9,10;
%e A207034 6,7,7,8,8,8,9,8,9,9,9,10,8,9,9,10,9,10,10,10,11;
%e A207034 ...
%e A207034 Consider a matrix [j X A000041(j)] in which the rows represent the partitions of j in colexicographic order (see A211992). Every part of every partition is located in a cell of the matrix. We can see that a(n) is the number of empty cells in row n for any integer j, if A000041(j) >= n. The number of empty cells in row n equals the sum of all parts minus the number of parts in the n-th partition of j.
%e A207034 Illustration of initial terms. The smallest part of every partition is located in the last column of the matrix.
%e A207034 ---------------------------------------------------------
%e A207034 .   j: 1    2       3         4           5             6
%e A207034 n a(n)
%e A207034 ---------------------------------------------------------
%e A207034 1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
%e A207034 2  1 |    . 2   . 2 1   . 2 1 1   . 2 1 1 1   . 2 1 1 1 1
%e A207034 3  2 |          . . 3   . . 3 1   . . 3 1 1   . . 3 1 1 1
%e A207034 4  2 |                  . . 2 2   . . 2 2 1   . . 2 2 1 1
%e A207034 5  3 |                  . . . 4   . . . 4 1   . . . 4 1 1
%e A207034 6  3 |                            . . . 3 2   . . . 3 2 1
%e A207034 7  4 |                            . . . . 5   . . . . 5 1
%e A207034 8  3 |                                        . . . 2 2 2
%e A207034 9  4 |                                        . . . . 4 2
%e A207034 10 4 |                                        . . . . 3 3
%e A207034 11 5 |                                        . . . . . 6
%e A207034 ...
%e A207034 Illustration of initial terms. In this case the largest part of every partition is located in the first column of the matrix.
%e A207034 ---------------------------------------------------------
%e A207034 .   j: 1    2       3         4           5             6
%e A207034 n a(n)
%e A207034 ---------------------------------------------------------
%e A207034 1  0 | 1  1 1   1 1 1   1 1 1 1   1 1 1 1 1   1 1 1 1 1 1
%e A207034 2  1 |    2 .   2 1 .   2 1 1 .   2 1 1 1 .   2 1 1 1 1 .
%e A207034 3  2 |          3 . .   3 1 . .   3 1 1 . .   3 1 1 1 . .
%e A207034 4  2 |                  2 2 . .   2 2 1 . .   2 2 1 1 . .
%e A207034 5  3 |                  4 . . .   4 1 . . .   4 1 1 . . .
%e A207034 6  3 |                            3 2 . . .   3 2 1 . . .
%e A207034 7  4 |                            5 . . . .   5 1 . . . .
%e A207034 8  3 |                                        2 2 2 . . .
%e A207034 9  4 |                                        4 2 . . . .
%e A207034 10 4 |                                        3 3 . . . .
%e A207034 11 5 |                                        6 . . . . .
%e A207034 ...
%Y A207034 Row r has length A187219(r). Partial sums give A207038. Row sums give A207035. Right border gives A001477. Where records occur give A000041 without repetitions.
%Y A207034 Cf. A135010, A138121, A141285, A182703, A194548, A196087, A207031, A207032, A207035, A211992, A228716, A230440.
%K A207034 nonn,tabf
%O A207034 1,3
%A A207034 _Omar E. Pol_, Feb 20 2012