cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207035 Sum of all parts minus the total number of parts of the last section of the set of partitions of n.

This page as a plain text file.
%I A207035 #42 Mar 05 2021 21:43:56
%S A207035 0,1,2,5,7,16,20,39,52,86,113,184,232,353,462,661,851,1202,1526,2098,
%T A207035 2670,3565,4514,5967,7473,9715,12162,15583,19373,24625,30410,38274,
%U A207035 47112,58725,71951,89129,108599,133612,162259,198346,239825,291718,351269,425102
%N A207035 Sum of all parts minus the total number of parts of the last section of the set of partitions of n.
%H A207035 Alois P. Heinz, <a href="/A207035/b207035.txt">Table of n, a(n) for n = 1..1000</a>
%F A207035 a(n) = A138879(n) - A138137(n) = A138880(n) - A138135(n). - _Omar E. Pol_, Apr 21 2012
%F A207035 G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k)^2 / Product_{j>=2} (1 - x^j). - _Ilya Gutkovskiy_, Mar 05 2021
%e A207035 For n = 7 the last section of the set of partitions of 7 looks like this:
%e A207035 .
%e A207035 .        (. . . . . . 7)
%e A207035 .        (. . . 4 . . 3)
%e A207035 .        (. . . . 5 . 2)
%e A207035 .        (. . 3 . 2 . 2)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .                    (1)
%e A207035 .
%e A207035 The sum of all parts = 7+4+3+5+2+3+2+2+1*11 = 39, on the other hand the total number of parts is 1+2+2+3+1*11 = 19, so a(7) = 39 - 19 = 20. Note that the number of dots in the picture is also equal to a(7) = 6+5+5+4 = 20.
%p A207035 b:= proc(n, i) option remember; local f, g;
%p A207035       if n=0 then [1, 0]
%p A207035     elif i<2 then [0, 0]
%p A207035     elif i>n then b(n, i-1)
%p A207035     else f:= b(n, i-1); g:= b(n-i, i);
%p A207035          [f[1]+g[1], f[2]+g[2] +g[1]*(i-1)]
%p A207035       fi
%p A207035     end:
%p A207035 a:= n-> b(n, n)[2]:
%p A207035 seq (a(n), n=1..50);  # _Alois P. Heinz_, Feb 20 2012
%t A207035 b[n_, i_] := b[n, i] = Module[{f, g}, Which[n==0, {1, 0}, i<2, {0, 0}, i>n , b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*(i-1)}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 13 2015, after _Alois P. Heinz_ *)
%Y A207035 Row sums of triangle A207034. Partial sums give A196087.
%Y A207035 Cf. A006128, A066186, A135010, A138121, A138135, A138137, A138879, A138880, A187219, A194548, A207038.
%K A207035 nonn
%O A207035 1,3
%A A207035 _Omar E. Pol_, Feb 20 2012
%E A207035 More terms from _Alois P. Heinz_, Feb 20 2012