This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207040 #16 Nov 08 2013 17:19:06 %S A207040 5,13,29,37,41,61,109,113,397,1321,1429,1613,2113,14449,26317,246241, %T A207040 279073,312709,525313,4327489,7416361,29247661,47392381,107367629, %U A207040 536903681,1326700741,40388473189,118750098349,275415303169,415878438361,1759217765581 %N A207040 Generalized Gaussian-Mersenne primes (see below). %H A207040 Marc Chamberland, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Chamberland/chamberland60.pdf">Binary BBP-Formulae for Logarithms and Generalized Gaussian-Mersenne Primes</a>, Journal of Integer Sequences, Vol. 6 (2003), Article 03.3.7. %H A207040 <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a> %F A207040 The numerator of the rational expression exp(2*Re(log(Phi_n((1 + i)/2)))) is prime, where Phi_n is the n-th cyclotomic polynomial. See A088962 for the values of n that generate primes. %t A207040 lst = {}; Do[s = Numerator@FullSimplify@Exp[2*Re@Log@Cyclotomic[n, (1 + I)/2]]; If[PrimeQ[s] && ! MemberQ[lst, s], AppendTo[lst, s]], {n, 2^7}]; Take[Sort[lst], 31] %Y A207040 Supersequence of A182300 (Gaussian-Mersenne primes). Cf. A088962, A057429. %K A207040 nonn %O A207040 1,1 %A A207040 _Arkadiusz Wesolowski_, May 07 2012