This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207063 #36 Jul 07 2021 11:25:49 %S A207063 0,3,5,6,10,12,15,23,27,29,30,46,54,58,60,63,95,111,119,123,125,126, %T A207063 190,222,238,246,250,252,255,383,447,479,495,503,507,509,510,766,894, %U A207063 958,990,1006,1014,1018,1020,1023,1535,1791,1919,1983,2015,2031,2039,2043 %N A207063 a(n) is the smallest number larger than a(n-1) with mutual Hamming distance 2 and a(1)=0. %C A207063 The binary expansion of a(n) has an even number of 1's. So this is a subsequence of A001969. The odd analog is A206853. %C A207063 This sequence has 4*k+1 = A016813(k) numbers with exactly 2*k 1's and no number with more than two 0's in their binary expansion. %H A207063 Alois P. Heinz, <a href="/A207063/b207063.txt">Table of n, a(n) for n = 1..20000</a> %e A207063 | n | a(n) | A007088(a(n))| A000120(a(n))| %e A207063 +---+------+--------------+--------------+ %e A207063 | 1 | 0 | 0 | 0 | %e A207063 | 2 | 3 | 11 | 2 | %e A207063 | 3 | 5 | 101 | 2 | %e A207063 | 4 | 6 | 110 | 2 | %e A207063 | 5 | 10 | 1010 | 2 | %e A207063 | 6 | 12 | 1100 | 2 | %e A207063 | 7 | 15 | 1111 | 4 | %e A207063 | 8 | 23 | 10111 | 4 | %p A207063 g:= proc(n) option remember; local l; l:= g(n-1); %p A207063 `if`(nops(l)=1, [l[1]+1, l[1]-1], `if`(nops(l)=2, %p A207063 `if`(l[2]<>0, [l[1], l[2]-1], [l[1]+1, 0, l[1]-1]), %p A207063 `if`(l[3]<>1, [l[1], l[2], l[3]-1], [l[1]]))) %p A207063 end: g(1):= [2, 0, 1]: %p A207063 a:= n-> (l-> 2^l[1]-1 -add(2^l[i], i=2..nops(l)))(g(n)): %p A207063 seq(a(n), n=1..300); %o A207063 (Python) %o A207063 def aupton(terms): %o A207063 alst = [0] %o A207063 for n in range(2, terms+1): %o A207063 an = alst[-1] + 1 %o A207063 while bin(an^alst[-1]).count('1') != 2: an += 1 %o A207063 alst.append(an) %o A207063 return alst %o A207063 print(aupton(54)) # _Michael S. Branicky_, Jul 07 2021 %Y A207063 Cf. A182187 (next with Hamming distance 2), A206853 (iterate from 1). %Y A207063 Cf. A000120, A001969, A007088, A016813. %K A207063 nonn,base %O A207063 1,2 %A A207063 _Alois P. Heinz_, Feb 14 2012