cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207069 Number of 2 X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

4, 16, 36, 81, 196, 441, 961, 2116, 4624, 10000, 21609, 46656, 100489, 216225, 465124, 1000000, 2149156, 4618201, 9922500, 21316689, 45792289, 98366724, 211295296, 453860416, 974875729, 2093977600, 4497714225, 9660727521, 20750402500
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Row 2 of A207068.

Examples

			Some solutions for n=4:
  1 0 1 1     0 1 1 1     1 0 0 0     0 1 1 0     0 1 1 0
  1 0 1 1     1 1 0 1     0 0 0 0     0 1 1 0     0 0 0 0
		

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 3*a(n-3) - 6*a(n-4) + 3*a(n-7) + a(n-8) - a(n-10).
Empirical g.f.: x*(4 + 4*x - 4*x^2 - 7*x^3 + x^4 + 3*x^5 + 3*x^6 + x^7 - x^8 - x^9) / ((1 - x)*(1 + x^2 - x^3)*(1 - x - x^3)*(1 - x - 2*x^2 - x^3)). - Colin Barker, Feb 17 2018

A207070 Number of 3Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 102, 288, 896, 2499, 6634, 17848, 47192, 122200, 315315, 809784, 2063670, 5238225, 13261490, 33465000, 84237826, 211676500, 531027000, 1330245423, 3328592562, 8320844952, 20782671568, 51871277456, 129387019195, 322571437760
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 3 of A207068

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..0....0..1..1..0....1..1..0..0....1..0..0..0
..0..1..1..1....1..1..1..0....0..1..1..1....0..0..0..0....0..1..1..1
..0..1..1..0....1..1..1..0....0..1..1..0....0..0..0..0....0..1..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) -9*a(n-2) +21*a(n-3) -56*a(n-4) +64*a(n-5) -89*a(n-6) +192*a(n-7) -119*a(n-8) +117*a(n-9) -305*a(n-10) +46*a(n-11) -64*a(n-12) +323*a(n-13) +39*a(n-14) +36*a(n-15) -228*a(n-16) -56*a(n-17) -4*a(n-18) +80*a(n-19) +24*a(n-20) -16*a(n-22)

A207062 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 102, 720, 6398, 54684, 468348, 4356936, 41716708, 403445900, 4037337213, 41571957024, 435311467198, 4653843868560, 50835606848268, 564791240516000, 6378296516533122, 73247208566761530, 853936849893078000
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Diagonal of A207068

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..0....1..1..0..1....1..1..0..0....0..1..1..0
..1..1..0..1....1..1..0..0....0..0..0..0....1..0..0..0....0..1..1..1
..1..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0....0..1..1..1
..0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

A207064 Number of n X 4 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 288, 720, 1485, 2709, 4536, 7128, 10665, 15345, 21384, 29016, 38493, 50085, 64080, 80784, 100521, 123633, 150480, 181440, 216909, 257301, 303048, 354600, 412425, 477009, 548856, 628488, 716445, 813285, 919584, 1035936, 1162953
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 4 of A207068.

Examples

			Some solutions for n=4:
..1..0..0..0....0..0..0..0....1..1..1..1....1..1..0..0....0..0..0..0
..1..0..0..0....0..1..1..1....1..1..1..1....1..0..0..0....0..1..1..0
..1..0..0..0....0..1..1..0....1..1..1..1....0..0..0..0....0..1..1..0
..0..0..0..0....0..1..1..0....1..1..1..1....0..0..0..0....0..0..0..0
		

Crossrefs

Cf. A207068.

Formula

Empirical: a(n) = (3/4)*n^4 + (15/2)*n^3 + (15/4)*n^2 - 3*n.
Conjectures from Colin Barker, Jun 18 2018: (Start)
G.f.: 9*x*(1 + 4*x - 3*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207065 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 896, 2688, 6398, 13132, 24304, 41664, 67326, 103796, 154000, 221312, 309582, 423164, 566944, 746368, 967470, 1236900, 1561952, 1950592, 2411486, 2954028, 3588368, 4325440, 5176990, 6155604, 7274736, 8548736, 9992878
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 5 of A207068.

Examples

			Some solutions for n=4:
..0..1..1..1..0....0..0..0..0..0....1..1..0..0..0....1..0..1..1..0
..0..1..1..0..1....1..1..0..0..0....0..1..1..1..1....1..1..0..0..0
..0..0..0..0..0....1..1..0..0..0....0..1..1..0..1....0..0..0..0..0
..0..0..0..0..0....1..0..0..0..0....0..1..1..0..0....0..0..0..0..0
		

Crossrefs

Cf. A207068.

Formula

Empirical: a(n) = (7/30)*n^5 + 7*n^4 + (21/2)*n^3 - (56/15)*n.
Conjectures from Colin Barker, Jun 18 2018: (Start)
G.f.: 14*x*(1 + 8*x - 5*x^2 - 2*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A207066 Number of n X 6 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

21, 441, 2499, 8799, 23856, 54684, 111426, 208026, 362943, 599907, 948717, 1446081, 2136498, 3073182, 4319028, 5947620, 8044281, 10707165, 14048391, 18195219, 23291268, 29497776, 36994902, 45983070, 56684355, 69343911, 84231441
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 6 of A207068.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....0..1..1..1..0..0....1..0..1..1..1..0....1..1..1..1..1..0
..1..0..1..1..1..0....1..0..1..1..1..0....0..1..1..1..1..0....0..0..0..0..0..0
..0..0..0..0..0..0....1..0..0..0..0..0....0..1..1..1..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
		

Crossrefs

Cf. A207068.

Formula

Empirical: a(n) = (7/120)*n^6 + (147/40)*n^5 + (49/3)*n^4 + (91/8)*n^3 - (707/120)*n^2 - (91/20)*n.
Conjectures from Colin Barker, Jun 18 2018: (Start)
G.f.: 21*x*(1 + 14*x - 7*x^2 - 8*x^3 + 2*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A207067 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

31, 961, 6634, 27063, 82739, 210118, 468348, 947298, 1776951, 3138223, 5275270, 8509345, 13254267, 20033564, 29499352, 42453012, 59867727, 82912941, 112980802, 151714651, 201039619, 263195394, 340771220, 436743190, 554513895, 697954491
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Column 7 of A207068.

Examples

			Some solutions for n=4:
..1..1..0..1..1..1..0....0..0..0..0..0..0..0....1..1..0..1..1..0..1
..0..1..1..0..0..0..0....1..1..1..1..1..0..0....1..1..0..0..0..0..0
..0..1..1..0..0..0..0....1..1..1..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..1..1..0..0..0..0....0..0..0..0..0..0..0
		

Crossrefs

Cf. A207068.

Formula

Empirical: a(n) = (31/2520)*n^7 + (62/45)*n^6 + (4867/360)*n^5 + (2015/72)*n^4 + (1271/180)*n^3 - (4991/360)*n^2 - (713/140)*n.
Conjectures from Colin Barker, Jun 18 2018: (Start)
G.f.: 31*x*(1 + 23*x - 6*x^2 - 27*x^3 + 11*x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A207071 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 216, 720, 2688, 8799, 27063, 84502, 257584, 762900, 2246895, 6565968, 18955015, 54365475, 155191828, 440404000, 1244062260, 3502380028, 9826626600, 27487369521, 76702016405, 213558055578, 593398011328, 1645981275528
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 4 of A207068

Examples

			Some solutions for n=4
..1..0..1..1....1..1..0..0....0..0..0..0....0..1..1..1....0..1..1..1
..0..0..0..0....0..1..1..1....0..1..1..0....1..1..1..0....0..0..0..0
..0..0..0..0....0..1..1..1....0..1..1..0....1..0..0..0....0..0..0..0
..0..0..0..0....0..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -20*a(n-2) +60*a(n-3) -200*a(n-4) +406*a(n-5) -795*a(n-6) +1948*a(n-7) -2956*a(n-8) +4315*a(n-9) -9183*a(n-10) +10237*a(n-11) -11623*a(n-12) +25456*a(n-13) -18911*a(n-14) +17833*a(n-15) -49104*a(n-16) +18984*a(n-17) -18492*a(n-18) +71354*a(n-19) -5313*a(n-20) +14092*a(n-21) -75268*a(n-22) -12707*a(n-23) -8053*a(n-24) +56095*a(n-25) +16847*a(n-26) +4140*a(n-27) -28320*a(n-28) -9288*a(n-29) -828*a(n-30) +8208*a(n-31) +2376*a(n-32) -1296*a(n-34)

A207072 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 390, 1485, 6398, 23856, 82739, 291364, 997288, 3297100, 10818024, 35133264, 112323561, 356011440, 1121062052, 3501522000, 10866865736, 33562033288, 103140966600, 315558380637, 961941393008, 2922406648218
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 5 of A207068

Examples

			Some solutions for n=4
..0..0..0..0....0..1..1..1....1..1..1..0....0..0..0..0....1..1..0..0
..0..1..1..0....0..1..1..0....0..1..1..0....0..1..1..1....0..0..0..0
..0..0..0..0....0..0..0..0....0..1..1..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 9*a(n-1) -35*a(n-2) +128*a(n-3) -504*a(n-4) +1405*a(n-5) -3527*a(n-6) +10004*a(n-7) -21957*a(n-8) +43116*a(n-9) -100600*a(n-10) +180542*a(n-11) -288683*a(n-12) +601553*a(n-13) -890790*a(n-14) +1178751*a(n-15) -2389520*a(n-16) +2860308*a(n-17) -3168352*a(n-18) +6925971*a(n-19) -6272993*a(n-20) +5964756*a(n-21) -15635179*a(n-22) +9301968*a(n-23) -8207968*a(n-24) +28084470*a(n-25) -8016257*a(n-26) +8613235*a(n-27) -39935561*a(n-28) +554384*a(n-29) -7574657*a(n-30) +44233732*a(n-31) +8559244*a(n-32) +5944596*a(n-33) -36966852*a(n-34) -12244472*a(n-35) -3806760*a(n-36) +22506064*a(n-37) +8779376*a(n-38) +1734912*a(n-39) -9491712*a(n-40) -3511296*a(n-41) -343296*a(n-42) +2433024*a(n-43) +691200*a(n-44) -331776*a(n-46)

A207073 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 636, 2709, 13132, 54684, 210118, 818892, 3093184, 11234900, 40417797, 143649720, 501215991, 1730494710, 5926924410, 20097642000, 67608559928, 226048464005, 751020224850, 2480966742240, 8157248135323, 26701216937370
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Row 6 of A207068

Examples

			Some solutions for n=4
..1..0..0..0....0..1..1..1....1..0..0..0....0..1..1..1....1..0..0..0
..0..1..1..0....0..1..1..0....0..1..1..0....1..0..1..1....1..0..0..0
..0..0..0..0....0..1..1..0....0..1..1..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 11*a(n-1) -54*a(n-2) +233*a(n-3) -1050*a(n-4) +3640*a(n-5) -11089*a(n-6) +35920*a(n-7) -99056*a(n-8) +242196*a(n-9) -639700*a(n-10) +1478924*a(n-11) -3032625*a(n-12) +6937737*a(n-13) -13824516*a(n-14) +24253259*a(n-15) -50278733*a(n-16) +87539747*a(n-17) -132541709*a(n-18) +260941029*a(n-19) -396839415*a(n-20) +519631693*a(n-21) -1027805897*a(n-22) +1337808121*a(n-23) -1514124337*a(n-24) +3218760589*a(n-25) -3412085747*a(n-26) +3355166175*a(n-27) -8263816626*a(n-28) +6517423098*a(n-29) -5746972973*a(n-30) +17642944576*a(n-31) -8835559237*a(n-32) +7802190211*a(n-33) -31325339864*a(n-34) +6972531771*a(n-35) -8828587935*a(n-36) +45717150475*a(n-37) +979431933*a(n-38) +8943733407*a(n-39) -53851890004*a(n-40) -11614620112*a(n-41) -8419996657*a(n-42) +50138993624*a(n-43) +17699423160*a(n-44) +6843857724*a(n-45) -35927029036*a(n-46) -15514917704*a(n-47) -4156136536*a(n-48) +19141800016*a(n-49) +8558709104*a(n-50) +1634054400*a(n-51) -7184578560*a(n-52) -2844288000*a(n-53) -292665600*a(n-54) +1686528000*a(n-55) +473472000*a(n-56) -207360000*a(n-58)
Showing 1-10 of 11 results. Next