A207098 Number of 0..6 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 7.
7, 28, 112, 462, 1904, 7868, 32531, 134517, 556259, 2300219, 9511719, 39332200, 162643507, 672550879, 2781080236, 11500107101, 47554350602, 196643061212, 813143132135, 3362446402726, 13904127534002, 57495269615906
Offset: 1
Keywords
Examples
Some solutions for n=5: ..2....5....1....2....3....4....5....1....4....4....0....0....1....0....0....4 ..6....5....1....3....3....6....5....4....4....5....0....2....3....2....3....6 ..6....3....5....6....6....3....4....6....5....2....0....6....4....2....5....4 ..6....4....6....5....2....5....4....5....4....1....5....3....2....6....3....6 ..5....2....4....4....4....3....5....4....6....3....6....5....6....3....1....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A207100.
Formula
Empirical: a(n) = 4*a(n-1) +3*a(n-2) -9*a(n-3) -8*a(n-4) +12*a(n-5) +11*a(n-6) -6*a(n-7) +5*a(n-8) -2*a(n-9) -17*a(n-10) +3*a(n-11) -4*a(n-12) -4*a(n-13) +a(n-14) -2*a(n-15) +9*a(n-16) -12*a(n-17) -a(n-18) +10*a(n-19) -19*a(n-20) -9*a(n-21) +7*a(n-22) -4*a(n-23) -3*a(n-24) +4*a(n-25) +14*a(n-26) +5*a(n-28) +11*a(n-29) +a(n-30) -a(n-31) -a(n-32) +8*a(n-33) +2*a(n-34) -a(n-35) +5*a(n-36) -2*a(n-37) -2*a(n-38) -a(n-40) -3*a(n-42) -a(n-43) -a(n-44) -a(n-49).