A207102 Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
12, 55, 176, 441, 989, 1904, 3504, 5925, 9652, 14850, 22390, 32305, 45920, 63323, 86112, 114393, 150567, 194218, 248704, 313495, 392480, 485024, 596300, 724705, 876876, 1051011, 1254512, 1485177, 1752481, 2052448, 2396864, 2781317, 3218508
Offset: 1
Examples
Some solutions for n=5 ..2....2....0....3....0....0....3....3....0....0....3....0....4....4....4....3 ..2....3....1....5....4....4....4....3....3....3....3....1....4....4....4....4 ..5....5....5....2....4....5....3....3....5....4....4....3....4....4....4....5 ..3....3....4....4....2....4....3....5....5....2....3....4....4....3....2....4 ..4....5....3....0....1....3....5....5....4....2....1....2....4....4....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A207100.
Formula
Empirical: a(n) = -3*a(n-1) -2*a(n-2) +5*a(n-3) +12*a(n-4) +9*a(n-5) -3*a(n-6) -14*a(n-7) -19*a(n-8) -17*a(n-9) -3*a(n-10) +20*a(n-11) +32*a(n-12) +20*a(n-13) -3*a(n-14) -17*a(n-15) -19*a(n-16) -14*a(n-17) -3*a(n-18) +9*a(n-19) +12*a(n-20) +5*a(n-21) -2*a(n-22) -3*a(n-23) -a(n-24).
Comments