cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207103 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).

This page as a plain text file.
%I A207103 #7 Jun 02 2025 07:40:54
%S A207103 18,115,458,1382,3579,7868,16224,30390,54294,90959,148204,229944,
%T A207103 349580,513531,740976,1041114,1444791,1960021,2632938,3474205,4543704,
%U A207103 5855409,7493700,9466310,11887746,14768802,18248930,22339541,27226927,32903121
%N A207103 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
%C A207103 Row 6 of A207100
%H A207103 R. H. Hardin, <a href="/A207103/b207103.txt">Table of n, a(n) for n = 1..210</a>
%F A207103 Empirical: a(n) = -3*a(n-1) -5*a(n-2) -5*a(n-3) -3*a(n-4) +2*a(n-5) +11*a(n-6) +21*a(n-7) +27*a(n-8) +25*a(n-9) +16*a(n-10) -3*a(n-11) -28*a(n-12) -52*a(n-13) -66*a(n-14) -67*a(n-15) -51*a(n-16) -16*a(n-17) +27*a(n-18) +69*a(n-19) +99*a(n-20) +111*a(n-21) +93*a(n-22) +52*a(n-23) -52*a(n-25) -93*a(n-26) -111*a(n-27) -99*a(n-28) -69*a(n-29) -27*a(n-30) +16*a(n-31) +51*a(n-32) +67*a(n-33) +66*a(n-34) +52*a(n-35) +28*a(n-36) +3*a(n-37) -16*a(n-38) -25*a(n-39) -27*a(n-40) -21*a(n-41) -11*a(n-42) -2*a(n-43) +3*a(n-44) +5*a(n-45) +5*a(n-46) +3*a(n-47) +a(n-48)
%e A207103 Some solutions for n=5
%e A207103 ..1....4....1....0....0....0....0....2....0....5....3....3....0....3....0....1
%e A207103 ..5....4....3....2....1....3....3....2....3....5....3....3....2....4....2....4
%e A207103 ..3....4....5....2....5....4....3....4....3....4....1....3....5....4....4....5
%e A207103 ..5....4....2....5....1....5....4....2....3....5....5....3....3....4....5....3
%e A207103 ..2....3....4....5....1....4....3....4....5....3....2....1....4....3....3....4
%e A207103 ..1....4....3....5....2....5....3....1....3....4....1....5....4....1....2....3
%K A207103 nonn
%O A207103 1,1
%A A207103 _R. H. Hardin_ Feb 15 2012