cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207108 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

This page as a plain text file.
%I A207108 #9 Jun 19 2018 03:32:55
%S A207108 13,169,677,1835,4047,7837,13863,22931,36009,54241,78961,111707,
%T A207108 154235,208533,276835,361635,465701,592089,744157,925579,1140359,
%U A207108 1392845,1687743,2030131,2425473,2879633,3398889,3989947,4659955,5416517,6267707
%N A207108 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.
%C A207108 Column 5 of A207111.
%H A207108 R. H. Hardin, <a href="/A207108/b207108.txt">Table of n, a(n) for n = 1..210</a>
%F A207108 Empirical: a(n) = (7/60)*n^5 + (8/3)*n^4 + (185/12)*n^3 + (19/3)*n^2 - (218/15)*n + 3.
%F A207108 Conjectures from _Colin Barker_, Jun 19 2018: (Start)
%F A207108 G.f.: x*(13 + 91*x - 142*x^2 + 48*x^3 + 7*x^4 - 3*x^5) / (1 - x)^6.
%F A207108 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
%F A207108 (End)
%e A207108 Some solutions for n=4:
%e A207108 ..0..0..1..0..1....1..1..0..0..1....1..0..1..0..0....1..1..0..1..0
%e A207108 ..1..1..1..0..1....0..1..0..1..0....1..0..0..1..0....1..1..0..1..0
%e A207108 ..1..0..1..0..1....1..1..0..0..1....1..0..1..0..0....1..1..0..1..0
%e A207108 ..1..1..1..0..1....0..1..0..0..1....1..0..1..0..0....1..1..0..1..0
%Y A207108 Cf. A207111.
%K A207108 nonn
%O A207108 1,1
%A A207108 _R. H. Hardin_, Feb 15 2012