cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207118 Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

6, 36, 102, 289, 612, 1296, 2340, 4225, 6890, 11236, 17066, 25921, 37352, 53824, 74472, 103041, 138030, 184900, 241230, 314721, 401676, 512656, 642252, 804609, 992082, 1223236, 1487570, 1809025, 2173520, 2611456, 3104336, 3690241, 4345302
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 3 of A207123.

Examples

			Some solutions for n=4:
..1..1..0....1..0..1....1..1..0....1..1..1....0..0..0....0..1..1....1..1..1
..0..0..0....0..1..1....1..1..0....1..1..1....0..1..1....0..1..1....1..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
		

Crossrefs

Cf. A207123.

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(6 + 24*x + 6*x^2 + x^3 + 16*x^4 - 4*x^5 - 20*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 24*n^5 + 208*n^4 + 816*n^3 + 1600*n^2 + 1536*n + 576) / 576 for n even.
a(n) = (n^6 + 24*n^5 + 205*n^4 + 768*n^3 + 1315*n^2 + 936*n + 207) / 576 for n odd.
(End)