cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207119 Number of nX4 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 288, 1024, 2560, 6400, 13200, 27225, 49665, 90601, 151704, 254016, 399168, 627264, 938520, 1404225, 2020425, 2907025, 4051080, 5645376, 7660224, 10394176, 13789048, 18292729, 23801505, 30969225, 39622800, 50694400, 63909120, 80568576
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 4 of A207123

Examples

			Some solutions for n=4
..1..1..1..1....1..1..1..1....1..0..1..1....0..1..1..0....0..1..1..0
..1..0..0..0....1..1..1..1....1..1..0..1....1..1..0..0....1..0..1..1
..0..1..1..1....1..1..1..1....0..0..0..0....0..1..1..0....0..0..0..0
..1..0..0..0....1..1..1..0....0..0..0..0....0..0..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)