cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207118 Number of n X 3 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

6, 36, 102, 289, 612, 1296, 2340, 4225, 6890, 11236, 17066, 25921, 37352, 53824, 74472, 103041, 138030, 184900, 241230, 314721, 401676, 512656, 642252, 804609, 992082, 1223236, 1487570, 1809025, 2173520, 2611456, 3104336, 3690241, 4345302
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 3 of A207123.

Examples

			Some solutions for n=4:
..1..1..0....1..0..1....1..1..0....1..1..1....0..0..0....0..1..1....1..1..1
..0..0..0....0..1..1....1..1..0....1..1..1....0..1..1....0..1..1....1..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
..0..0..0....0..0..0....1..1..0....1..1..1....0..0..0....0..1..1....0..1..1
		

Crossrefs

Cf. A207123.

Formula

Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(6 + 24*x + 6*x^2 + x^3 + 16*x^4 - 4*x^5 - 20*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5).
a(n) = (n^6 + 24*n^5 + 208*n^4 + 816*n^3 + 1600*n^2 + 1536*n + 576) / 576 for n even.
a(n) = (n^6 + 24*n^5 + 205*n^4 + 768*n^3 + 1315*n^2 + 936*n + 207) / 576 for n odd.
(End)

A207117 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 16, 102, 1024, 12288, 175561, 2330037, 40119556, 667127008, 12622297801, 236060280854, 5051251755001, 104507364758952, 2416776784204176, 54925343492859621, 1369884877162739344, 33478733130375924736
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Diagonal of A207123

Examples

			Some solutions for n=4
..1..0..0..0....1..1..1..1....1..0..1..1....0..1..1..0....0..0..0..0
..1..1..0..0....1..1..1..1....1..1..0..1....1..1..0..0....0..1..1..0
..1..0..0..0....1..1..1..1....0..0..0..0....0..1..1..0....0..0..0..0
..1..1..0..0....1..1..1..0....0..0..0..0....0..0..0..0....0..0..0..0
		

A207119 Number of nX4 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 288, 1024, 2560, 6400, 13200, 27225, 49665, 90601, 151704, 254016, 399168, 627264, 938520, 1404225, 2020425, 2907025, 4051080, 5645376, 7660224, 10394176, 13789048, 18292729, 23801505, 30969225, 39622800, 50694400, 63909120, 80568576
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 4 of A207123

Examples

			Some solutions for n=4
..1..1..1..1....1..1..1..1....1..0..1..1....0..1..1..0....0..1..1..0
..1..0..0..0....1..1..1..1....1..1..0..1....1..1..0..0....1..0..1..1
..0..1..1..1....1..1..1..1....0..0..0..0....0..1..1..0....0..0..0..0
..1..0..0..0....1..1..1..0....0..0..0..0....0..0..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207120 Number of nX5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

14, 196, 896, 4096, 12288, 36864, 87744, 208849, 428666, 879844, 1628368, 3013696, 5166336, 8856576, 14311584, 23126481, 35653926, 54967396, 81554000, 121000000, 173888000, 249892864, 349562304, 488984769, 668387538, 913611076, 1224032096
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 5 of A207123

Examples

			Some solutions for n=4
..0..1..1..0..0....0..0..0..0..0....1..0..0..0..0....0..1..1..0..0
..1..1..1..1..1....1..0..1..1..0....1..0..1..1..1....1..0..1..1..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..0..0
..0..1..1..0..0....1..0..0..0..0....0..0..0..0..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A207121 Number of nX6 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

21, 441, 2499, 14161, 49861, 175561, 475984, 1290496, 2958144, 6780816, 13816824, 28153636, 52561236, 98128836, 171205398, 298702089, 493723461, 816073489, 1290571359, 2040961329, 3110933397, 4741837321, 7005780418, 10350620644
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 6 of A207123

Examples

			Some solutions for n=4
..0..1..1..1..0..1....0..0..0..0..0..0....1..0..1..1..1..0....1..0..1..1..1..0
..0..0..0..0..0..0....1..0..0..0..0..0....0..1..1..1..1..0....0..1..1..0..1..1
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)

A207122 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

31, 961, 6634, 45796, 186822, 762129, 2330037, 7123561, 18090482, 45941284, 102402024, 228251664, 461670264, 933791364, 1751615118, 3285697041, 5802776793, 10248120289, 17226819610, 28957828900, 46710814150, 75347505025
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 7 of A207123.

Examples

			Some solutions for n=4
..1..1..1..0..0..0..0....1..0..1..1..0..0..0....0..1..1..0..0..0..0
..0..1..1..1..0..0..0....0..0..0..0..0..0..0....1..1..1..1..0..0..0
..1..0..0..0..0..0..0....1..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..1..1..0..0..0..0....0..0..0..0..0..0..0....1..0..1..1..0..0..0
		

Crossrefs

Cf. A207123.

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28).

A207124 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 289, 1024, 4096, 14161, 45796, 150544, 481636, 1493284, 4601025, 14055001, 42380100, 126900225, 378108025, 1119906225, 3301766521, 9702250000, 28419216400, 83012558161, 241951836996, 703860593296, 2044150748644
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 4 of A207123

Examples

			Some solutions for n=4
..0..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0....0..1..1..0
..0..1..1..0....1..1..1..1....0..1..1..1....1..0..0..0....1..0..1..1
..0..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0....0..0..0..0
..0..0..0..0....1..1..1..0....0..1..1..1....0..0..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 6*a(n-1) -12*a(n-2) +30*a(n-3) -105*a(n-4) +140*a(n-5) -191*a(n-6) +637*a(n-7) -525*a(n-8) +374*a(n-9) -2132*a(n-10) +851*a(n-11) -82*a(n-12) +4997*a(n-13) -364*a(n-14) -761*a(n-15) -7828*a(n-16) -1358*a(n-17) +1552*a(n-18) +7812*a(n-19) +2336*a(n-20) -1168*a(n-21) -4944*a(n-22) -1472*a(n-23) +512*a(n-24) +1632*a(n-25) +448*a(n-26) -128*a(n-27) -256*a(n-28)

A207125 Number of 5 X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

12, 144, 612, 2560, 12288, 49861, 186822, 712756, 2628872, 9322638, 32786325, 113962102, 389265450, 1317047475, 4424787530, 14738119860, 48761979210, 160532542000, 525896099120, 1715320212047, 5575387622490, 18064884103644
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Row 5 of A207123.

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..0....1..0..0..0....0..1..1..0....0..1..1..1
..0..1..1..1....0..1..1..0....0..1..1..1....1..1..0..1....0..1..1..1
..0..0..0..0....1..0..0..0....1..0..0..0....0..0..0..0....0..1..1..0
..0..1..1..1....0..1..1..0....0..0..0..0....1..1..0..0....0..0..0..0
..0..0..0..0....1..0..0..0....1..0..0..0....0..0..0..0....0..1..1..0
		

Crossrefs

Cf. A207123.

Formula

Empirical: a(n) = 9*a(n-1) -33*a(n-2) +124*a(n-3) -540*a(n-4) +1469*a(n-5) -3685*a(n-6) +11988*a(n-7) -25871*a(n-8) +49378*a(n-9) -140046*a(n-10) +244890*a(n-11) -364391*a(n-12) +1026031*a(n-13) -1432346*a(n-14) +1631553*a(n-15) -5342318*a(n-16) +5581642*a(n-17) -4568076*a(n-18) +21467119*a(n-19) -14534975*a(n-20) +7158188*a(n-21) -68838049*a(n-22) +21845322*a(n-23) -1202418*a(n-24) +176672722*a(n-25) -1251197*a(n-26) -21389899*a(n-27) -358454837*a(n-28) -82080698*a(n-29) +52348891*a(n-30) +562385994*a(n-31) +219301460*a(n-32) -67577952*a(n-33) -667860328*a(n-34) -321333520*a(n-35) +55353168*a(n-36) +585709344*a(n-37) +299576016*a(n-38) -33930144*a(n-39) -365057280*a(n-40) -178049664*a(n-41) +17630784*a(n-42) +153436032*a(n-43) +62083584*a(n-44) -7713792*a(n-45) -38257920*a(n-46) -10824192*a(n-47) +2239488*a(n-48) +4478976*a(n-49).

A207126 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

16, 256, 1296, 6400, 36864, 175561, 762129, 3374569, 14348944, 58201641, 233631225, 924038404, 3575442025, 13669117225, 51780822916, 193955683216, 720138932100, 2656156771984, 9731679550096, 35444317041169, 128475764131225
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 6 of A207123

Examples

			Some solutions for n=4
..0..0..0..0....1..0..0..0....0..0..0..0....1..1..0..0....1..0..0..0
..0..0..0..0....0..1..1..0....1..0..0..0....1..1..1..0....1..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....1..1..0..0....1..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 10*a(n-1) -39*a(n-2) +151*a(n-3) -745*a(n-4) +2222*a(n-5) -5679*a(n-6) +21328*a(n-7) -52118*a(n-8) +98913*a(n-9) -334471*a(n-10) +691695*a(n-11) -968051*a(n-12) +3424827*a(n-13) -6009825*a(n-14) +5652383*a(n-15) -25675661*a(n-16) +36871821*a(n-17) -17307097*a(n-18) +151230139*a(n-19) -163399581*a(n-20) -9100169*a(n-21) -724111551*a(n-22) +510014161*a(n-23) +373557291*a(n-24) +2839906825*a(n-25) -997587885*a(n-26) -2000328083*a(n-27) -9018675022*a(n-28) +513770271*a(n-29) +6343010388*a(n-30) +22753048028*a(n-31) +3770782754*a(n-32) -13745500241*a(n-33) -44790453292*a(n-34) -14352660423*a(n-35) +21250373533*a(n-36) +67602030126*a(n-37) +28245367596*a(n-38) -23867092008*a(n-39) -76800621528*a(n-40) -35807161968*a(n-41) +19604960064*a(n-42) +64172537712*a(n-43) +30229857072*a(n-44) -11902793184*a(n-45) -37974609216*a(n-46) -16580096064*a(n-47) +5301941184*a(n-48) +15012127872*a(n-49) +5380929792*a(n-50) -1620829440*a(n-51) -3505358592*a(n-52) -856604160*a(n-53) +302330880*a(n-54) +362797056*a(n-55)

A207127 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

20, 400, 2340, 13200, 87744, 475984, 2330037, 11635558, 55554808, 251535759, 1124853720, 4944356292, 21187341735, 89511994640, 374050079444, 1542084294888, 6290403091560, 25452983767264, 102144395660496
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 7 of A207123

Examples

			Some solutions for n=4
..1..0..0..0....1..0..1..1....0..1..1..1....0..0..0..0....0..1..1..1
..0..1..1..1....1..1..1..1....0..0..0..0....0..1..1..1....0..0..0..0
..1..0..0..0....1..0..1..1....0..0..0..0....0..0..0..0....0..1..1..0
..0..0..0..0....1..1..1..1....0..0..0..0....0..1..1..1....0..0..0..0
..1..0..0..0....1..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....1..0..1..1....0..0..0..0....0..1..1..0....0..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 14*a(n-1) -85*a(n-2) +465*a(n-3) -2822*a(n-4) +12754*a(n-5) -49933*a(n-6) +221157*a(n-7) -822163*a(n-8) +2623048*a(n-9) -9629962*a(n-10) +30940490*a(n-11) -83877127*a(n-12) +271445106*a(n-13) -776325841*a(n-14) +1815714481*a(n-15) -5411660781*a(n-16) +14035468772*a(n-17) -28313347286*a(n-18) +81087340968*a(n-19) -192557799542*a(n-20) +330145401354*a(n-21) -956433942970*a(n-22) +2077668559612*a(n-23) -2930469039412*a(n-24) +9220909157736*a(n-25) -18049249228634*a(n-26) +19708041889332*a(n-27) -74973728810243*a(n-28) +127836810352284*a(n-29) -95798677241303*a(n-30) +527014304509161*a(n-31) -739141589649874*a(n-32) +274155640271866*a(n-33) -3254553426680445*a(n-34) +3442351405160113*a(n-35) +251735582682661*a(n-36) +17755326582683868*a(n-37) -12397164148419178*a(n-38) -8416874103601210*a(n-39) -85238813721035527*a(n-40) +30462323265391834*a(n-41) +57394192756314261*a(n-42) +356641326189364413*a(n-43) -21154865730496055*a(n-44) -255789417360060438*a(n-45) -1285870672369593082*a(n-46) -239393332410432412*a(n-47) +850275238654182400*a(n-48) +3953493496920048448*a(n-49) +1502759028308998816*a(n-50) -2190587059135330320*a(n-51) -10273265200251020496*a(n-52) -5429085403228467040*a(n-53) +4418865045976514272*a(n-54) +22389152106247372416*a(n-55) +14282822084351523904*a(n-56) -6954042835118706560*a(n-57) -40627618659809065600*a(n-58) -29001696212110566912*a(n-59) +8426293314130777856*a(n-60) +60910606360484891136*a(n-61) +46263593091806492160*a(n-62) -7710740741859591168*a(n-63) -74747053931918579712*a(n-64) -58035913196236812288*a(n-65) +5271114170652475392*a(n-66) +74155386899211190272*a(n-67) +56696829452796100608*a(n-68) -2887939270111002624*a(n-69) -58437094989686243328*a(n-70) -42268173079509467136*a(n-71) +1706149960629092352*a(n-72) +35632041588440432640*a(n-73) +23235629071699279872*a(n-74) -1288493772501417984*a(n-75) -16132821706296262656*a(n-76) -8894278787747807232*a(n-77) +842463838702927872*a(n-78) +5068707999762087936*a(n-79) +2129759193740083200*a(n-80) -340333498176897024*a(n-81) -973115091056590848*a(n-82) -248794866908135424*a(n-83) +68475651442606080*a(n-84) +82170781731127296*a(n-85)
Showing 1-10 of 10 results.