cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207139 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).

This page as a plain text file.
%I A207139 #7 Mar 30 2012 18:37:35
%S A207139 1,2,7,147,14481,6183605,19196862399,206667738393577,
%T A207139 6727813723143519624,1368162090055314881480420,
%U A207139 1237384559488983889303951699285,3014186760620644058660289396656407831,34123084437870355957570087446546456971276065
%N A207139 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k) * binomial(n^2,k^2) ).
%C A207139 The logarithmic derivative yields A207140.
%e A207139 G.f.: A(x) = 1 + 2*x + 7*x^2 + 147*x^3 + 14481*x^4 + 6183605*x^5 +...
%e A207139 where the logarithm of the g.f. equals the l.g.f. of A207140:
%e A207139 log(A(x)) = x + 2*x^2/2 + 10*x^3/3 + 407*x^4/4 + 56746*x^5/5 +...
%o A207139 (PARI) {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)*binomial(m^2,k^2))+x*O(x^n))),n)}
%o A207139 for(n=0,16,print1(a(n),", "))
%Y A207139 Cf. A207140 (log), A206850, A207135, A207137, A167006.
%K A207139 nonn
%O A207139 0,2
%A A207139 _Paul D. Hanna_, Feb 15 2012