A207166 Number of n X 5 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
13, 169, 624, 1612, 3445, 6513, 11284, 18304, 28197, 41665, 59488, 82524, 111709, 148057, 192660, 246688, 311389, 388089, 478192, 583180, 704613, 844129, 1003444, 1184352, 1388725, 1618513, 1875744, 2162524, 2481037, 2833545, 3222388, 3649984
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1..1..0....1..1..0..0..1....1..0..0..1..0....1..1..1..0..0 ..1..1..1..1..1....0..0..1..1..0....1..1..1..0..0....0..1..1..1..1 ..1..1..1..1..1....0..0..1..0..0....0..0..1..0..0....0..1..1..1..0 ..1..1..0..0..1....0..0..1..0..0....0..0..1..0..0....0..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A207169.
Formula
Empirical: a(n) = (13/4)*n^4 + (13/2)*n^3 + (117/4)*n^2 - 26*n.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: 13*x*(1 + 8*x - 7*x^2 + 4*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments