cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207167 Number of n X 6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

This page as a plain text file.
%I A207167 #8 Jun 20 2018 08:29:23
%S A207167 19,361,1482,3952,8455,15789,26866,42712,64467,93385,130834,178296,
%T A207167 237367,309757,397290,501904,625651,770697,939322,1133920,1356999,
%U A207167 1611181,1899202,2223912,2588275,2995369,3448386,3950632,4505527,5116605
%N A207167 Number of n X 6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
%C A207167 Column 6 of A207169.
%H A207167 R. H. Hardin, <a href="/A207167/b207167.txt">Table of n, a(n) for n = 1..210</a>
%F A207167 Empirical: a(n) = (19/4)*n^4 + (95/2)*n^3 - (57/4)*n^2 - 19*n.
%F A207167 Conjectures from _Colin Barker_, Jun 20 2018: (Start)
%F A207167 G.f.: 19*x*(1 + 14*x - 7*x^2 - 2*x^3) / (1 - x)^5.
%F A207167 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
%F A207167 (End)
%e A207167 Some solutions for n=4:
%e A207167 ..1..1..1..1..0..0....1..0..0..1..0..0....1..0..0..1..0..0....1..0..0..1..0..0
%e A207167 ..0..0..1..0..0..1....0..1..1..0..0..1....1..1..1..0..0..1....0..1..1..0..0..1
%e A207167 ..0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1....0..1..1..0..0..1
%e A207167 ..0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1....0..0..1..0..0..1
%Y A207167 Cf. A207169.
%K A207167 nonn
%O A207167 1,1
%A A207167 _R. H. Hardin_, Feb 15 2012