cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207177 Number of n X 3 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

7, 49, 241, 1171, 5917, 30067, 151981, 767377, 3877045, 19592047, 98998267, 500220187, 2527540111, 12771357967, 64532102977, 326072549563, 1647603384079, 8325132536305, 42065847045655, 212553428463613, 1074005709153595
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 3 of A207182.

Examples

			Some solutions for n=4:
..0..1..1....1..0..0....0..0..1....0..0..1....0..0..1....0..0..1....1..1..1
..0..1..1....1..0..1....0..0..1....1..0..0....0..0..1....0..1..1....1..1..1
..0..1..1....1..0..1....0..0..1....1..1..1....1..1..1....1..1..0....0..1..0
..0..1..1....1..0..1....1..1..1....0..1..1....1..1..0....1..0..0....0..1..0
		

Crossrefs

Cf. A207182.

Formula

Empirical: a(n) = 4*a(n-1) + 2*a(n-2) + 12*a(n-3) + 23*a(n-4) + 6*a(n-5) - a(n-6) - 2*a(n-7) - a(n-8).
Empirical g.f.: x*(7 + 21*x + 31*x^2 + 25*x^3 + 2*x^4 - 4*x^5 - 3*x^6 - x^7) / (1 - 4*x - 2*x^2 - 12*x^3 - 23*x^4 - 6*x^5 + x^6 + 2*x^7 + x^8). - Colin Barker, Jun 21 2018

A207178 Number of nX4 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

13, 169, 1393, 11227, 95299, 816667, 6951227, 59040685, 501829587, 4267306637, 36285226037, 308510297123, 2623052584859, 22302344594307, 189625018122875, 1612277620195105, 13708297950194541, 116554044545138583
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 4 of A207182

Examples

			Some solutions for n=4
..0..1..1..0....1..1..0..1....1..1..0..1....0..0..1..0....1..0..0..1
..0..0..1..0....1..0..1..1....1..1..0..1....0..0..1..0....0..1..1..0
..0..0..1..1....0..0..1..1....0..1..1..0....1..1..0..0....1..1..1..1
..1..0..0..1....0..0..1..1....0..0..1..1....1..1..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -14*a(n-2) +122*a(n-3) +241*a(n-4) +205*a(n-5) +1610*a(n-6) -1293*a(n-7) -8293*a(n-8) -3968*a(n-9) +3959*a(n-10) +8030*a(n-11) +12180*a(n-12) +3570*a(n-13) -245*a(n-14) -2586*a(n-15) -2664*a(n-16) -336*a(n-17) -215*a(n-18) +31*a(n-19) +36*a(n-20) -5*a(n-21) -a(n-22) -2*a(n-23) -a(n-24)

A207179 Number of nX5 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

24, 576, 7915, 105836, 1507355, 21722593, 310484943, 4425513760, 63134328412, 901227159937, 12864169578564, 183601169909753, 2620373717197037, 37399084988893847, 533779392358514542, 7618351848031247224
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 5 of A207182

Examples

			Some solutions for n=4
..0..0..1..0..0....0..1..0..0..1....1..0..0..1..0....1..1..1..0..0
..0..0..1..1..0....0..0..1..1..0....0..1..1..0..1....1..1..0..1..0
..1..1..0..1..1....0..0..1..1..1....1..1..1..0..1....0..1..1..1..1
..1..1..0..1..1....1..1..0..1..1....1..0..1..1..0....0..0..1..1..1
		

Formula

Empirical: a(n) = 12*a(n-1) -36*a(n-2) +634*a(n-3) +4098*a(n-4) +5462*a(n-5) +99665*a(n-6) -2831*a(n-7) -2711535*a(n-8) -5811471*a(n-9) -21595748*a(n-10) -50244781*a(n-11) +699156432*a(n-12) +2805186154*a(n-13) -1711985669*a(n-14) -23505060267*a(n-15) -41164099705*a(n-16) +4531263468*a(n-17) +230067134087*a(n-18) +623575317534*a(n-19) +491376424651*a(n-20) -1004604976989*a(n-21) -4315099768732*a(n-22) -8194599870080*a(n-23) -5269740168383*a(n-24) +9640114794896*a(n-25) +37729419354018*a(n-26) +71038437114243*a(n-27) +65206345331720*a(n-28) +6398077775057*a(n-29) -128912250552524*a(n-30) -313243092655199*a(n-31) -398842140156762*a(n-32) -410554148881289*a(n-33) -152310619852360*a(n-34) +174972950940365*a(n-35) +488932300795972*a(n-36) +728147007195199*a(n-37) +579508394228234*a(n-38) +432062400764247*a(n-39) +84249753457526*a(n-40) -114750756929761*a(n-41) -137702129617284*a(n-42) -144122080448237*a(n-43) -2109540225702*a(n-44) +39130879358369*a(n-45) +41776228840084*a(n-46) +41931377732835*a(n-47) -5407945067260*a(n-48) -10399911657259*a(n-49) -7890691832174*a(n-50) -7597475169707*a(n-51) +2336641327088*a(n-52) +2182853060509*a(n-53) +627246636214*a(n-54) +675379657161*a(n-55) -437255942895*a(n-56) -309434424065*a(n-57) +10359291184*a(n-58) -6522467343*a(n-59) +41315422680*a(n-60) +26330640167*a(n-61) -861631081*a(n-62) -654948570*a(n-63) -1173281053*a(n-64) -808363716*a(n-65) +55848554*a(n-66) +48087338*a(n-67) +8015714*a(n-68) +7272811*a(n-69) -159503*a(n-70) -369476*a(n-71) -45345*a(n-72) -63129*a(n-73) -4187*a(n-74) +1355*a(n-75) +401*a(n-76) +356*a(n-77) +18*a(n-78) -a(n-79) -a(n-80) -a(n-81)

A207180 Number of nX6 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

44, 1936, 44065, 981850, 23471595, 567046841, 13575513917, 324280404464, 7753960008192, 185490886984435, 4436906789153102, 106121193817646599, 2538197480774276123, 60709250545517745427, 1452061508622073819918
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 6 of A207182

Examples

			Some solutions for n=4
..1..0..1..1..1..0....0..0..1..1..1..1....0..0..1..1..0..1....1..1..1..1..1..1
..0..1..0..1..1..0....0..1..0..1..0..1....0..0..1..1..0..0....1..1..1..1..0..1
..0..1..1..1..0..1....1..1..1..0..1..0....1..1..0..0..1..1....1..1..1..1..1..1
..0..0..1..1..1..1....1..0..1..0..1..0....1..1..0..0..1..1....1..1..1..1..1..1
		

A207181 Number of nX7 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

81, 6561, 248525, 9196215, 368714705, 14960137403, 600838995529, 24069606968809, 965286091829121, 38732271412245771, 1553999307045885583, 62342694966576014475, 2501032004180975268881, 100336844251838872157471
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Column 7 of A207182

Examples

			Some solutions for n=4
..0..1..0..0..1..1..1....1..0..1..1..0..1..0....1..0..1..1..1..0..0
..0..0..1..1..1..0..1....1..0..1..0..1..1..0....0..1..0..1..1..0..1
..1..1..1..1..0..1..1....0..1..0..0..1..0..1....0..1..1..1..0..1..1
..1..1..1..0..0..1..1....0..1..0..1..0..1..1....0..0..1..1..1..1..1
		

A207183 Number of 4Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

12, 144, 1171, 11227, 105836, 981850, 9196215, 85977231, 803283624, 7509476422, 70190937945, 656058072353, 6132248125196, 57318047597584, 535750978547941, 5007668680211309, 46806669029193682, 437501879260273952
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 4 of A207182

Examples

			Some solutions for n=4
..0..0..1..0....1..1..1..1....1..1..1..1....0..1..1..1....1..0..0..1
..0..1..1..0....1..1..1..1....1..1..0..0....0..0..1..1....0..1..1..0
..1..1..1..0....1..1..1..1....0..0..1..1....1..0..0..1....1..1..1..1
..1..1..0..0....1..1..1..1....1..1..1..1....1..1..1..1....1..0..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +26*a(n-2) +217*a(n-3) +103*a(n-4) +85*a(n-5) -4044*a(n-6) +1053*a(n-7) -6517*a(n-8) +27058*a(n-9) -11158*a(n-10) +29024*a(n-11) -63148*a(n-12) +15300*a(n-13) -29296*a(n-14) +43157*a(n-15) +2016*a(n-16) +4274*a(n-17) -7152*a(n-18) -147*a(n-19) -45*a(n-20) +375*a(n-21)

A207184 Number of 5Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

21, 441, 5917, 95299, 1507355, 23471595, 368714705, 5782895827, 90654802423, 1421716453961, 22294076155075, 349592218477051, 5482034564500123, 85964497396238357, 1348020724029962565, 21138507798707438087
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 5 of A207182

Examples

			Some solutions for n=4
..1..0..0..1....1..1..1..0....1..1..0..0....0..0..1..0....1..0..1..0
..0..1..1..0....0..1..1..0....1..1..1..0....0..1..1..1....1..1..1..1
..1..1..1..1....1..1..0..1....1..0..1..1....1..1..1..1....0..1..0..1
..1..1..1..1....1..0..1..1....0..1..1..1....1..1..0..1....0..1..0..0
..1..1..0..1....0..0..1..1....0..1..1..1....1..1..0..1....0..1..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) +83*a(n-2) +1190*a(n-3) +2570*a(n-4) +1715*a(n-5) -127262*a(n-6) -167009*a(n-7) -555963*a(n-8) +6100518*a(n-9) +2198261*a(n-10) +29038332*a(n-11) -162999726*a(n-12) +29985749*a(n-13) -611268791*a(n-14) +2310044342*a(n-15) -519115562*a(n-16) +5561369985*a(n-17) -16596127449*a(n-18) -589068089*a(n-19) -22042668943*a(n-20) +61880797132*a(n-21) +23631249276*a(n-22) +40190260720*a(n-23) -133081020930*a(n-24) -69578904353*a(n-25) -40936425079*a(n-26) +160103135581*a(n-27) +81478976065*a(n-28) +22009720016*a(n-29) -112742635033*a(n-30) -49696931693*a(n-31) -6879801896*a(n-32) +45712992267*a(n-33) +16208846028*a(n-34) +1384385954*a(n-35) -10254029946*a(n-36) -2765515848*a(n-37) -322823170*a(n-38) +1061936648*a(n-39) +170199072*a(n-40) +23285550*a(n-41) -48351936*a(n-42) -5360604*a(n-43) -692020*a(n-44) +1096672*a(n-45) +58880*a(n-46) +11732*a(n-47) -10976*a(n-48)

A207185 Number of 6Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

37, 1369, 30067, 816667, 21722593, 567046841, 14960137403, 393934620059, 10366536590869, 272944432231993, 7185484420054113, 189160505226559221, 4979849925118152399, 131098664493870778791, 3451280584490458325363
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 6 of A207182

Examples

			Some solutions for n=4
..0..0..1..0....0..1..1..1....0..0..1..0....0..0..1..1....0..0..1..0
..0..0..1..0....1..0..1..1....1..1..0..0....0..1..0..0....0..1..0..0
..1..1..0..0....1..1..0..1....1..1..1..0....1..1..1..1....1..1..1..1
..1..1..0..0....1..1..0..1....1..0..1..0....1..0..1..1....1..1..1..1
..0..0..1..1....0..1..1..0....0..1..1..0....1..1..1..0....0..0..1..1
..1..0..1..1....0..0..1..1....1..1..1..0....0..1..0..1....1..1..0..0
		

Formula

Empirical: a(n) = 10*a(n-1) +204*a(n-2) +5773*a(n-3) +10527*a(n-4) +11765*a(n-5) -4391741*a(n-6) -1907193*a(n-7) -74738501*a(n-8) +1689211571*a(n-9) -2370185856*a(n-10) +35648744643*a(n-11) -389154378747*a(n-12) +876284296850*a(n-13) -7142994090367*a(n-14) +52714372485941*a(n-15) -121563943391343*a(n-16) +739962767679936*a(n-17) -4261711652283616*a(n-18) +8520789054522047*a(n-19) -43753654906236901*a(n-20) +213585967617769723*a(n-21) -328221127651494567*a(n-22) +1576102915633376464*a(n-23) -6969176200159622634*a(n-24) +6953949967222771851*a(n-25) -36778289756798076842*a(n-26) +157053026654316651610*a(n-27) -67609017666164020398*a(n-28) +595308983790721615711*a(n-29) -2587906459072392301695*a(n-30) -284467819739339864006*a(n-31) -7114222053397473999214*a(n-32) +32354654981171162193541*a(n-33) +18192265196237698772328*a(n-34) +65502788305733649607122*a(n-35) -312357052535478204076420*a(n-36) -276634242151790981844103*a(n-37) -471370599534295631813023*a(n-38) +2346325326823467391799378*a(n-39) +2522171861382089782442779*a(n-40) +2630678224338436745141491*a(n-41) -13775300009195435966571043*a(n-42) -15865258037264803515144238*a(n-43) -11237160968005196647974182*a(n-44) +63336965958893694400588826*a(n-45) +72621933365403816609401025*a(n-46) +36275900613690482001572800*a(n-47) -228055461383519230288075433*a(n-48) -248286059196517369803369144*a(n-49) -87439381134794460775746873*a(n-50) +641752530410928530117650474*a(n-51) +642390357667757465181478894*a(n-52) +155093716769516392253176555*a(n-53) -1406094553943988783060952833*a(n-54) -1264865230914309673491749717*a(n-55) -198850640084682385502048848*a(n-56) +2385705780922338745977144223*a(n-57) +1896088037760542513234047437*a(n-58) +181247377848646571328261693*a(n-59) -3113536909122887529207797601*a(n-60) -2157685226824271905078519283*a(n-61) -120843406631831802505862431*a(n-62) +3101380230155321541245845805*a(n-63) +1854773840232274505756875339*a(n-64) +73202561173869458434000889*a(n-65) -2340032196117523620447222123*a(n-66) -1199275266776866095398387412*a(n-67) -58699159153472845916932308*a(n-68) +1326392090594455138469907956*a(n-69) +579073380892291578580008832*a(n-70) +47711357785651702811332144*a(n-71) -562734657312810486185840704*a(n-72) -207714178890661808163992448*a(n-73) -27880198765852419632261648*a(n-74) +178823971785054944900705600*a(n-75) +55175609542525747941509376*a(n-76) +10973766086969318888594432*a(n-77) -42619764594631851728532224*a(n-78) -10769906261991617552772096*a(n-79) -2965775392892169445945344*a(n-80) +7611026567334605369110528*a(n-81) +1513713998269529442795520*a(n-82) +559481951172924333867008*a(n-83) -1010063299376025860177920*a(n-84) -147219805043975197032448*a(n-85) -73250870395697227038720*a(n-86) +97461301163933983834112*a(n-87) +9138391832149733933056*a(n-88) +6438454080725942534144*a(n-89) -6527594890336197935104*a(n-90) -298382003192324947968*a(n-91) -346478254932484947968*a(n-92) +272980079093397585920*a(n-93) +2676787446099738624*a(n-94) +8616168939438735360*a(n-95) -5309251379460571136*a(n-96)

A207186 Number of 7Xn 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

65, 4225, 151981, 6951227, 310484943, 13575513917, 600838995529, 26534076780959, 1170871871472313, 51701095335035709, 2282533143749663089, 100768156649910377157, 4448827811097756475927, 196409522544211889696463
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 7 of A207182

Examples

			Some solutions for n=4
..0..0..1..0....1..1..1..0....0..0..1..0....1..0..0..1....0..0..1..1
..1..0..0..1....0..1..0..0....1..1..1..0....0..1..1..1....1..0..1..0
..1..1..0..1....0..0..1..0....1..1..1..0....1..1..1..1....1..1..0..1
..1..1..1..1....1..1..1..0....1..1..0..1....1..1..1..0....0..1..0..1
..0..1..1..0....1..1..1..0....1..0..1..1....0..1..0..0....0..1..0..0
..0..1..1..1....1..0..0..1....0..0..1..1....0..1..0..0....1..0..1..1
..1..0..0..1....0..1..1..1....0..0..1..1....0..1..1..1....1..1..1..1
		

A207176 Number of n X n 0..1 arrays avoiding 0 0 0 horizontally and 0 1 0 vertically.

Original entry on oeis.org

2, 16, 241, 11227, 1507355, 567046841, 600838995529, 1782395103048207, 14875073639322545780, 349568074576274459361253, 23097327995486146831078764702, 4291548218733300058236161251915163
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Diagonal of A207182

Examples

			Some solutions for n=4
..1..0..0..1....0..1..1..0....1..1..0..1....1..1..1..1....1..1..0..1
..1..0..0..1....0..0..1..0....1..0..1..1....1..1..1..1....0..0..1..0
..1..1..1..1....0..0..1..1....0..0..1..1....1..1..1..1....0..1..1..1
..1..1..1..1....1..0..0..1....0..0..1..1....1..1..1..1....1..1..1..1
		
Showing 1-10 of 10 results.