This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207188 #5 Mar 30 2012 18:58:12 %S A207188 2,4,6,9,11,13,15,17,20,22,24,26,28,30,32,34,36,38,40,43,45,47,49,51, %T A207188 53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,90,92,94,96,98, %U A207188 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128 %N A207188 Numbers matching polynomials y(k,x) that have x as a factor; see Comments. %C A207188 The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821. %e A207188 The first 13 polynomials: %e A207188 1 .... 1 %e A207188 2 .... x %e A207188 3 .... x + 1 %e A207188 4 .... x^2 %e A207188 5 .... x^2 - 1 %e A207188 6 .... x^2 - x %e A207188 7 .... x^2 - x - 1 %e A207188 8 .... x^2 + 1 %e A207188 9 .... x^2 + x %e A207188 10 ... x^2 + x + 1 %e A207188 11 ... x^3 %e A207188 12 ... x^3 - 1 %e A207188 13 ... x^3 - x %e A207188 The list exemplifies these sequences: %e A207188 A207187 (multiples of x + 1): 3,5,9,13,... %e A207188 A207188 (multiples of x): 2,4,6,9,11,13,... %e A207188 A207189 (multiples of x - 1): 5,6,12,13,... %e A207188 A207190 (multiples of x^2 + 1): 8,20,25,27,... %t A207188 t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; %t A207188 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207188 p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] %t A207188 TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] %t A207188 f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; %t A207188 q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] %t A207188 q2[n_] := p[n - f[k] + 2] %t A207188 y1 = Table[p[n], {n, 1, 4}]; %t A207188 Do[AppendTo[y1, %t A207188 Join[Table[q1[n], {n, f[k], g[k] - 1}], %t A207188 Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] %t A207188 y = Flatten[y1]; (* polynomials over {-1,0,1} *) %t A207188 TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]] %t A207188 Table[y[[n]] /. x -> -1, {n, 1, 300}]; %t A207188 Flatten[Position[%, 0]] (* A207187 *) %t A207188 Table[y[[n]] /. x -> 0, {n, 1, 300}] ; %t A207188 Flatten[Position[%, 0]] (* A207188 *) %t A207188 Table[y[[n]] /. x -> 1, {n, 1, 1200}] ; %t A207188 Flatten[Position[%, 0]] (* A207189 *) %t A207188 Table[y[[n]] /. x -> I, {n, 1, 600}] ; %t A207188 Flatten[Position[%, 0]] (* A207190 *) %Y A207188 Cf. A206821. %K A207188 nonn %O A207188 1,1 %A A207188 _Clark Kimberling_, Feb 16 2012