cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207191 Numbers that match even polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.

This page as a plain text file.
%I A207191 #5 Mar 30 2012 18:58:12
%S A207191 1,4,5,8,26,27,30,31,42,45,46,120,121,124,125,136,137,140,141,184,187,
%T A207191 188,199,200,203,204,502,503,506,507,518,519,522,523,566,567,570,571,
%U A207191 582,583,586,587,758,761,762,773,774,777,778,821,822,825,826
%N A207191 Numbers that match even polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.
%C A207191 The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
%e A207191 The first 13 polynomials:
%e A207191 1 .... 1
%e A207191 2 .... x
%e A207191 3 .... x + 1
%e A207191 4 .... x^2
%e A207191 5 .... x^2 - 1
%e A207191 6 .... x^2 - x
%e A207191 7 .... x^2 - x - 1
%e A207191 8 .... x^2 + 1
%e A207191 9 .... x^2 + x
%e A207191 10 ... x^2 + x + 1
%e A207191 11 ... x^3
%e A207191 12 ... x^3 - 1
%e A207191 13 ... x^3 - x
%e A207191 Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,...
%e A207191 Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,...
%t A207191 t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
%t A207191 b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t A207191 p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
%t A207191 TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
%t A207191 f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
%t A207191 q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
%t A207191 q2[n_] := p[n - f[k] + 2]
%t A207191 y1 = Table[p[n], {n, 1, 4}];
%t A207191 Do[AppendTo[y1,
%t A207191   Join[Table[q1[n], {n, f[k], g[k] - 1}],
%t A207191    Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
%t A207191 y = Flatten[y1]; (* polynomials over {-1,0,1} *)
%t A207191 Flatten[Position[y - (y /. x -> -x), 0]]  (* A207191 *)
%t A207191 Flatten[Position[y + (y /. x -> -x), 0]]  (* A207192  *)
%Y A207191 Cf. A206821.
%K A207191 nonn
%O A207191 1,2
%A A207191 _Clark Kimberling_, Feb 16 2012