This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207192 #5 Mar 30 2012 18:58:12 %S A207192 2,11,13,20,57,59,65,67,90,96,98,247,249,255,257,279,281,287,289,376, %T A207192 382,384,406,408,414,416,1013,1015,1021,1023,1045,1047,1053,1055,1141, %U A207192 1143,1149,1151,1173,1175,1181,1183,1526,1532,1534,1556,1558 %N A207192 Numbers that match odd polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821. %C A207192 The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821. %e A207192 The first 13 polynomials: %e A207192 1 .... 1 %e A207192 2 .... x %e A207192 3 .... x + 1 %e A207192 4 .... x^2 %e A207192 5 .... x^2 - 1 %e A207192 6 .... x^2 - x %e A207192 7 .... x^2 - x - 1 %e A207192 8 .... x^2 + 1 %e A207192 9 .... x^2 + x %e A207192 10 ... x^2 + x + 1 %e A207192 11 ... x^3 %e A207192 12 ... x^3 - 1 %e A207192 13 ... x^3 - x %e A207192 Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,... %e A207192 Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,... %t A207192 t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; %t A207192 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207192 p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] %t A207192 TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] %t A207192 f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; %t A207192 q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] %t A207192 q2[n_] := p[n - f[k] + 2] %t A207192 y1 = Table[p[n], {n, 1, 4}]; %t A207192 Do[AppendTo[y1, %t A207192 Join[Table[q1[n], {n, f[k], g[k] - 1}], %t A207192 Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] %t A207192 y = Flatten[y1]; (* polynomials over {-1,0,1} *) %t A207192 Flatten[Position[y - (y /. x -> -x), 0]] (* A207191 *) %t A207192 Flatten[Position[y + (y /. x -> -x), 0]] (* A207192 *) %Y A207192 Cf. A206821. %K A207192 nonn %O A207192 1,1 %A A207192 _Clark Kimberling_, Feb 16 2012