A207251 Number of nX5 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.
10, 100, 390, 1950, 9072, 43498, 206514, 982940, 4672690, 22223478, 105684192, 502611290, 2390250122, 11367287780, 54059152686, 257088257194, 1222630168560, 5814441801566, 27651641179470, 131502438430740, 625383900547134
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1..1..1....1..0..0..0..0....1..1..0..0..0....1..1..0..0..0 ..1..1..0..0..0....0..0..0..0..0....1..0..0..0..0....1..0..0..0..0 ..1..1..0..0..0....0..1..1..0..0....0..0..0..0..0....1..0..0..0..0 ..1..0..0..0..0....0..1..1..0..0....0..0..0..0..0....1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +6*a(n-2) +a(n-3) +36*a(n-4) +49*a(n-5) +31*a(n-6) +66*a(n-7) +45*a(n-8) +15*a(n-9) -5*a(n-10) -16*a(n-11) -a(n-12) -a(n-13) +a(n-14)
Comments