A207252 Number of nX6 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.
12, 144, 636, 3560, 18688, 101036, 541380, 2906592, 15585680, 83611228, 448508160, 2406031628, 12906861916, 69237527840, 371416568460, 1992423747700, 10688138114240, 57335348257076, 307569175706760, 1649921069864080
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1..1..0..0....0..1..1..0..0..0....0..1..1..0..0..0....0..0..0..0..0..0 ..1..0..0..0..0..0....0..0..0..0..0..0....0..1..0..0..0..0....1..1..0..0..0..0 ..1..0..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0....1..1..0..0..0..0 ..0..1..1..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0....0..1..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +9*a(n-2) +4*a(n-3) +58*a(n-4) +117*a(n-5) +100*a(n-6) +160*a(n-7) +169*a(n-8) +74*a(n-9) -12*a(n-10) -67*a(n-11) -26*a(n-12) +6*a(n-13) +3*a(n-14) +3*a(n-15) -a(n-16)
Comments