A207254 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 8, 36, 36, 10, 10, 64, 102, 100, 16, 12, 100, 216, 370, 256, 26, 14, 144, 390, 940, 1232, 676, 42, 16, 196, 636, 1950, 3776, 4238, 1764, 68, 18, 256, 966, 3560, 9072, 15652, 14406, 4624, 110, 20, 324, 1392, 5950, 18688, 43498, 64176, 49164
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..1..0....0..0..0....1..0..0....0..0..0....1..1..1....1..0..0....1..1..1 ..1..0..0....0..0..0....0..0..0....0..1..1....1..1..1....1..0..0....1..1..1 ..1..0..0....1..1..1....0..0..0....1..1..1....0..1..0....1..0..0....1..1..1 ..0..1..1....1..1..1....0..1..1....1..0..0....0..1..0....1..0..0....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1057
Formula
Empirical for row n:
n=1: a(k) = 2*k
n=2: a(k) = 4*k^2
n=3: a(k) = 2*k^3 + 6*k^2 - 2*k
n=4: a(k) = (5/6)*k^4 + (35/3)*k^3 - (5/6)*k^2 - (5/3)*k
n=5: a(k) = (4/15)*k^5 + (32/3)*k^4 + (44/3)*k^3 - (32/3)*k^2 + (16/15)*k
n=6: a(k) = (13/180)*k^6 + (143/20)*k^5 + (1235/36)*k^4 - (39/4)*k^3 - (377/45)*k^2 + (13/5)*k
n=7: a(k) = (1/60)*k^7 + (77/20)*k^6 + (2527/60)*k^5 + (119/4)*k^4 - (644/15)*k^3 + (42/5)*k^2 + (4/5)*k
Comments