cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207256 Number of 5 X n 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1232, 3776, 9072, 18688, 34608, 59264, 95568, 146944, 217360, 311360, 434096, 591360, 789616, 1036032, 1338512, 1705728, 2147152, 2673088, 3294704, 4024064, 4874160, 5858944, 6993360, 8293376, 9776016, 11459392, 13362736
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2012

Keywords

Comments

Row 5 of A207254.

Examples

			Some solutions for n=4:
..1..0..0..0....0..1..1..0....0..1..0..0....0..1..1..0....1..1..1..1
..0..1..1..0....1..1..0..0....1..1..1..0....0..1..1..1....1..1..0..0
..0..1..1..1....1..0..0..0....1..1..1..1....1..1..1..1....0..0..0..0
..1..1..1..1....0..0..0..0....0..1..1..1....1..0..0..0....0..0..0..0
..1..1..0..0....0..0..0..0....0..0..0..0....1..0..0..0....1..0..0..0
		

Crossrefs

Cf. A207254.

Formula

Empirical: a(n) = (4/15)*n^5 + (32/3)*n^4 + (44/3)*n^3 - (32/3)*n^2 + (16/15)*n.
Conjectures from Colin Barker, Jun 21 2018: (Start)
G.f.: 16*x*(1 + 10*x - 4*x^2 - 6*x^3 + x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)