This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207293 #22 Feb 18 2025 03:50:42 %S A207293 67,89,139,157,179,193,197,199,229,269,283,337,359,373,379,397,409, %T A207293 449,463,467,487,557,571,577,593,607,643,647,661,683,719,733,739,751, %U A207293 757,773,809,823,827,829,863,881,883,919,937,953,971,991,1039,1093,1097,1129,1187 %N A207293 Primes p whose digit sum s(p) is also prime but whose iterated digit sum s(s(p)) is not prime. %C A207293 A046704 is primes p with s(p) also prime. A207294 is primes p with s(p) and s(s(p)) also prime. A070027 is primes p with all s(p), s(s(p)), s(s(s(p))), ... also prime. A104213 is primes p with s(p) not prime. A213354 is primes p with s(p) and s(s(p)) also prime but s(s(s(p))) not prime. A213355 is smallest prime p whose k-fold digit sum s(s(..s(p)..)) is also prime for all k < n, but not for k = n. %H A207293 Charles R Greathouse IV, <a href="/A207293/b207293.txt">Table of n, a(n) for n = 1..10000</a> %e A207293 67 is prime and s(67) = 6+7 = 13 is also prime, but s(s(67)) = s(13) = 1+3 = 4 is not prime. Since no smaller prime has this property, a(1) = 67. %p A207293 isA207293 := proc(n) %p A207293 local d; %p A207293 if isprime(n) then %p A207293 d := digsum(n) ; %p A207293 if isprime(d) then %p A207293 d := digsum(d) ; %p A207293 if isprime(d) then %p A207293 false ; %p A207293 else %p A207293 true ; %p A207293 end if; %p A207293 else %p A207293 false ; %p A207293 end if; %p A207293 else %p A207293 false; %p A207293 end if; %p A207293 end proc: %p A207293 A207293 := proc(n) %p A207293 option remember ; %p A207293 if n = 1 then %p A207293 67 ; %p A207293 else %p A207293 a := nextprime(procname(n-1)) ; %p A207293 while not isA207293(a) do %p A207293 a := nextprime(a) ; %p A207293 end do: %p A207293 a ; %p A207293 end if; %p A207293 end proc: # _R. J. Mathar_, Feb 04 2021 %t A207293 Select[Prime[Range[300]], %t A207293 PrimeQ[Apply[Plus, IntegerDigits[#]]] && ! %t A207293 PrimeQ[Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[#]]]]] &] %t A207293 idsQ[n_]:=PrimeQ[Rest[NestList[Total[IntegerDigits[#]]&,n,2]]]=={True,False}; Select[Prime[Range[200]],idsQ] (* _Harvey P. Dale_, Dec 28 2013 *) %o A207293 (PARI) select(p->my(s=sumdigits(p));isprime(s)&&!isprime(sumdigits(s)), primes(1000)) \\ _Charles R Greathouse IV_, Jun 10 2012 %Y A207293 Cf. A046704, A070027, A104213, A207294, A213354, A213355. %K A207293 base,nonn %O A207293 1,1 %A A207293 _Jonathan Sondow_, Jun 09 2012