cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207294 Primes p whose digit sum s(p) and iterated digit sum s(s(p)) are also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 83, 101, 113, 131, 137, 151, 173, 191, 223, 227, 241, 263, 281, 311, 313, 317, 331, 353, 401, 421, 443, 461, 599, 601, 641, 797, 821, 887, 911, 977, 1013, 1019, 1031, 1033, 1051, 1091, 1103, 1109, 1123, 1163, 1181, 1213, 1217
Offset: 1

Views

Author

Jonathan Sondow, Jun 09 2012

Keywords

Comments

Sum_{a(n) < x} 1/a(n) is asymptotic to (9/4)*log(log(log(log(x)))) as x -> infinity; see Harman (2012). Thus the sequence is infinite.
The first member not in A070027 is 59899999.
A046704 is primes p with s(p) also prime. A070027 is primes p with all s(p), s(s(p)), s(s(s(p))), ... also prime. A104213 is primes p with s(p) not prime. A207293 is primes p with s(p) also prime, but not s(s(p)). A213354 is primes p with s(p) and s(s(p)) also prime, but not s(s(s(p))). A213355 is smallest prime p whose k-fold digit sum s(s(..s(p)..)) is also prime for all k < n, but not for k = n.

Examples

			59899999 and s(59899999) = 5+9+8+9+9+9+9+9 = 67 and s(s(59899999)) = s(67) = 6+7 = 13 are all primes, so 59899999 is a member. But s(s(s(59899999))) = s(13) = 1+3 = 4 is not prime, so 59899999 is not a member of A070027.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]], PrimeQ[Apply[Plus, IntegerDigits[#]]] && PrimeQ[Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[#]]]]] &]
  • PARI
    select(p->my(s=sumdigits(p));isprime(s)&&isprime(sumdigits(s)), primes(1000)) \\ Charles R Greathouse IV, Jun 10 2012