cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207306 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 98, 271, 665, 1675, 4344, 11081, 28136, 71908, 183709, 468421, 1195165, 3050758, 7784759, 19863812, 50690966, 129357269, 330093729, 842344955, 2149538940, 5485269169, 13997500468, 35719380356, 91150094557, 232600215969
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2012

Keywords

Comments

Row 3 of A207305.

Examples

			Some solutions for n=4:
..0..0..1..0....0..0..1..1....1..1..1..1....0..1..0..0....1..1..1..1
..0..0..1..0....0..1..0..0....1..1..1..1....0..0..1..0....1..1..0..0
..0..0..1..0....0..1..0..0....1..1..1..1....0..0..1..0....1..1..1..1
		

Crossrefs

Cf. A207305.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 6*a(n-3) + 4*a(n-4) + a(n-5) - 2*a(n-6) - 2*a(n-7) for n>9.
Empirical g.f.: x*(6 + 30*x + 56*x^2 + 101*x^3 + 56*x^4 + x^5 - 38*x^6 - 26*x^7 - 2*x^8) / (1 - x - x^2 - 6*x^3 - 4*x^4 - x^5 + 2*x^6 + 2*x^7). - Colin Barker, Mar 05 2018

A207302 Number of n X 5 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

13, 169, 665, 1759, 3773, 7093, 12169, 19515, 29709, 43393, 61273, 84119, 112765, 148109, 191113, 242803, 304269, 376665, 461209, 559183, 671933, 800869, 947465, 1113259, 1299853, 1508913, 1742169, 2001415, 2288509, 2605373, 2953993, 3336419
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2012

Keywords

Comments

Column 5 of A207305.

Examples

			Some solutions for n=4:
..1..1..1..1..0....1..0..0..1..1....1..1..0..0..1....1..0..0..1..0
..0..1..0..0..1....0..1..0..0..1....0..1..0..0..1....0..0..1..0..0
..0..1..0..0..1....0..1..0..0..1....0..1..0..0..1....1..0..0..1..0
..0..1..0..0..1....0..1..0..0..1....0..1..0..0..1....1..0..0..1..0
		

Crossrefs

Cf. A207305.

Formula

Empirical: a(n) = (8/3)*n^4 + (49/3)*n^3 + (16/3)*n^2 - (43/3)*n + 3.
Conjectures from Colin Barker, Jun 21 2018: (Start)
G.f.: x*(13 + 104*x - 50*x^2 - 6*x^3 + 3*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207303 Number of n X 6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

19, 361, 1675, 4939, 11497, 23091, 41893, 70537, 112151, 170389, 249463, 354175, 489949, 662863, 879681, 1147885, 1475707, 1872161, 2347075, 2911123, 3575857, 4353739, 5258173, 6303537, 7505215, 8879629, 10444271, 12217735, 14219749
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2012

Keywords

Comments

Column 6 of A207305.

Examples

			Some solutions for n=4:
..1..0..0..1..0..0....1..1..0..0..1..1....0..0..1..0..0..1....0..0..1..0..0..1
..0..1..0..0..1..0....1..1..1..1..0..0....1..0..0..1..1..0....0..1..1..0..0..1
..1..1..0..0..1..0....1..1..0..0..1..1....1..0..0..1..0..0....0..1..1..0..0..1
..1..1..0..0..1..0....1..1..1..0..0..1....1..0..0..1..1..0....0..1..1..0..0..1
		

Crossrefs

Cf. A207305.

Formula

Empirical: a(n) = (4/15)*n^5 + (45/4)*n^4 + (199/6)*n^3 - (73/4)*n^2 - (373/30)*n + 5.
Conjectures from Colin Barker, Jun 21 2018: (Start)
G.f.: x*(19 + 247*x - 206*x^2 - 76*x^3 + 53*x^4 - 5*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)

A207304 Number of n X 7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

28, 784, 4344, 14446, 36868, 79802, 154228, 274288, 457660, 725932, 1104976, 1625322, 2322532, 3237574, 4417196, 5914300, 7788316, 10105576, 12939688, 16371910, 20491524, 25396210, 31192420, 37995752, 45931324, 55134148, 65749504
Offset: 1

Views

Author

R. H. Hardin, Feb 16 2012

Keywords

Comments

Column 7 of A207305.

Examples

			Some solutions for n=4:
..1..1..0..0..1..1..1....0..0..1..0..0..1..1....0..1..0..0..1..0..0
..0..0..1..1..1..0..0....1..1..1..1..0..0..1....1..0..0..1..1..1..1
..1..0..0..1..1..1..1....0..1..1..0..0..1..1....1..0..0..1..1..1..0
..0..0..1..1..1..1..1....1..1..1..1..0..0..1....1..0..0..1..1..1..0
		

Crossrefs

Cf. A207305.

Formula

Empirical: a(n) = (187/60)*n^5 + (153/4)*n^4 + (455/12)*n^3 - (249/4)*n^2 + (209/30)*n + 4.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 2*x*(14 + 308*x + 30*x^2 - 209*x^3 + 46*x^4 - 2*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A207307 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 200, 643, 1759, 4939, 14446, 41505, 118266, 339548, 975493, 2795633, 8015023, 22994104, 65948845, 189120690, 542403026, 1555646545, 4461518045, 12795484071, 36697414724, 105247642363, 301847990088, 865695191094, 2482800552095
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Row 4 of A207305

Examples

			Some solutions for n=4
..1..0..0..1....0..0..1..0....1..1..0..0....0..0..1..1....1..1..1..1
..0..1..1..0....1..0..0..1....1..1..0..0....1..0..0..1....1..1..1..1
..1..0..0..1....0..0..1..0....1..1..0..0....0..0..1..1....1..1..1..1
..1..1..1..1....1..0..0..1....1..1..0..0....0..0..1..1....1..1..1..1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +8*a(n-3) +7*a(n-4) -2*a(n-5) -10*a(n-6) -10*a(n-7) -a(n-8) +3*a(n-9) +4*a(n-10) +a(n-11) -a(n-13) for n>14

A207308 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 350, 1271, 3773, 11497, 36868, 116117, 361408, 1134028, 3564401, 11172725, 35022953, 109875752, 344642683, 1080804698, 3389755038, 10631811817, 33344912997, 104580332523, 328001505224, 1028729270911, 3226449372360
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Row 5 of A207305

Examples

			Some solutions for n=4
..0..1..0..0....1..0..0..1....1..1..1..1....1..0..0..1....1..0..0..1
..1..1..1..1....1..1..1..0....1..0..0..1....0..0..1..1....1..0..0..1
..0..1..1..1....1..0..0..1....1..1..1..1....0..0..1..1....1..0..0..1
..1..1..1..1....1..1..0..0....1..0..0..1....0..0..1..1....1..0..0..1
..1..1..1..1....1..0..0..1....1..0..0..1....0..0..1..1....1..0..0..1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +11*a(n-3) +13*a(n-4) +3*a(n-5) -12*a(n-6) -27*a(n-7) -13*a(n-8) -3*a(n-9) +15*a(n-10) +8*a(n-11) +4*a(n-12) -5*a(n-13) -a(n-14) -a(n-15) +2*a(n-16) -a(n-17) for n>18

A207309 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 556, 2239, 7093, 23091, 79802, 271023, 906448, 3057442, 10340359, 34870751, 117557963, 396686326, 1338456663, 4514922232, 15230949488, 51384415639, 173349069871, 584798251431, 1972858125612, 6655586739783
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Row 6 of A207305

Examples

			Some solutions for n=4
..0..0..1..1....1..1..1..1....1..0..0..1....0..0..1..1....1..1..1..0
..0..1..0..0....1..1..1..1....0..1..1..0....1..0..0..1....1..1..0..0
..0..1..1..0....1..1..1..1....0..0..1..0....1..0..0..1....1..1..1..0
..0..1..0..0....1..1..1..1....0..0..1..0....1..0..0..1....1..1..1..0
..0..1..1..0....1..1..1..1....0..0..1..0....1..0..0..1....1..1..1..0
..0..1..1..0....1..1..1..1....0..0..1..0....1..0..0..1....1..1..1..0
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +13*a(n-3) +18*a(n-4) -2*a(n-5) -30*a(n-6) -59*a(n-7) -25*a(n-8) +16*a(n-9) +68*a(n-10) +44*a(n-11) +3*a(n-12) -42*a(n-13) -23*a(n-14) -3*a(n-15) +17*a(n-16) +a(n-17) -2*a(n-18) -2*a(n-19) +3*a(n-20) -a(n-21) for n>22

A207310 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 826, 3641, 12169, 41893, 154228, 558557, 1985288, 7118528, 25615229, 91904787, 329521585, 1182693282, 4244878879, 15231126240, 54653169406, 196125671283, 703788796565, 2525467220941, 9062451338100, 32520070058673
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Row 7 of A207305

Examples

			Some solutions for n=4
..1..0..0..1....1..0..0..1....1..0..0..1....1..0..0..1....1..1..0..0
..0..1..1..1....0..1..0..0....1..0..0..1....0..1..1..0....1..0..0..1
..1..0..0..1....1..0..0..1....1..0..0..1....1..0..0..1....1..1..0..0
..0..0..1..1....1..1..0..0....1..0..0..1....1..1..1..1....1..0..0..1
..1..0..0..1....1..1..0..0....1..0..0..1....1..1..1..1....1..1..0..0
..1..0..0..1....1..1..0..0....1..0..0..1....1..1..1..1....1..0..0..1
..1..0..0..1....1..1..0..0....1..0..0..1....1..1..1..1....1..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +16*a(n-3) +27*a(n-4) +6*a(n-5) -31*a(n-6) -106*a(n-7) -75*a(n-8) -24*a(n-9) +133*a(n-10) +134*a(n-11) +81*a(n-12) -80*a(n-13) -89*a(n-14) -60*a(n-15) +47*a(n-16) +14*a(n-17) +13*a(n-18) -22*a(n-19) +10*a(n-20) -a(n-21) +5*a(n-22) -7*a(n-23) +4*a(n-24) -a(n-25) for n>26

A207301 Number of n X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 16, 98, 643, 3773, 23091, 154228, 1050811, 7236644, 51776044, 383107149, 2907310903, 22583670553, 180085426836, 1470632881207
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Diagonal of A207305

Examples

			Some solutions for n=4
..0..1..0..0....1..0..0..1....1..1..1..1....0..0..1..1....1..0..0..1
..1..0..0..1....0..1..1..0....1..1..1..1....0..0..1..1....0..1..0..0
..1..1..0..0....1..1..0..0....1..1..1..1....0..0..1..1....1..1..0..0
..1..1..0..0....0..1..1..0....1..1..1..1....0..0..1..1....1..1..0..0
		
Showing 1-9 of 9 results.