cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A207312 Number of nX3 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

26, 676, 15390, 347502, 7791488, 174545777, 3908531208, 87515884741, 1959513380192, 43873997112932, 982347997376840, 21994968695108692, 492471697249839464, 11026538323840183371, 246886363177103814747
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Column 3 of A207317

Examples

			Some solutions for n=4
..2..0..1....2..1..2....1..2..1....2..1..0....2..0..2....1..0..1....2..2..1
..0..0..2....1..2..1....1..1..1....0..1..1....1..1..1....2..0..2....2..0..0
..1..1..2....0..2..1....1..0..1....1..0..0....1..0..0....0..2..2....2..0..0
..0..0..1....1..1..2....2..1..2....1..2..2....1..2..2....2..0..2....2..2..2
		

Formula

Empirical: a(n) = 27*a(n-1) -43*a(n-2) -1591*a(n-3) +4195*a(n-4) +31861*a(n-5) -81210*a(n-6) -248372*a(n-7) +529289*a(n-8) +552322*a(n-9) -1158991*a(n-10) -641935*a(n-11) +1301158*a(n-12) +424638*a(n-13) -829889*a(n-14) -156675*a(n-15) +298360*a(n-16) +28115*a(n-17) -53314*a(n-18) -1015*a(n-19) +2751*a(n-20) +80*a(n-21) -64*a(n-22)

A207313 Number of nX4 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

75, 5625, 347502, 21162579, 1274682671, 76655305645, 4606553380932, 276789915709747, 16630439634501547, 999200176926554674, 60034353063489024248, 3607005574351298992200, 216717354269519024539824
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Column 4 of A207317

Examples

			Some solutions for n=4
..2..0..1..0....0..1..0..1....2..0..1..1....2..1..0..2....2..0..2..1
..0..2..2..0....2..2..0..0....2..1..0..1....1..1..1..2....1..1..1..0
..2..2..0..1....0..2..2..0....1..0..2..2....1..1..0..1....0..1..0..0
..2..1..2..1....0..1..0..1....1..0..0..0....1..1..0..1....0..0..0..2
		

Formula

Empirical: a(n) = 75*a(n-1) -279*a(n-2) -45570*a(n-3) +360399*a(n-4) +10758594*a(n-5) -89418087*a(n-6) -1282704678*a(n-7) +9622046741*a(n-8) +83991684452*a(n-9) -524684798753*a(n-10) -3124316607347*a(n-11) +16294108278566*a(n-12) +73837796281370*a(n-13) -321212735916316*a(n-14) -1202630622445126*a(n-15) +4344739514026903*a(n-16) +14188010030887292*a(n-17) -42466937646470938*a(n-18) -124869080839963285*a(n-19) +309446338030526095*a(n-20) +834251238058907367*a(n-21) -1706449381205460069*a(n-22) -4269778870267147197*a(n-23) +7145538878775547348*a(n-24) +16771334741015011813*a(n-25) -22614994376083737931*a(n-26) -50264518822529748935*a(n-27) +53531909285886075629*a(n-28) +113370438194638916287*a(n-29) -93372855025356012809*a(n-30) -188577729435241235217*a(n-31) +118337561096501852855*a(n-32) +227069542492801776279*a(n-33) -108680904841024121037*a(n-34) -197946919817151615041*a(n-35) +73346742318972076468*a(n-36) +128476192488780521131*a(n-37) -37500327033822846000*a(n-38) -64315963308173535313*a(n-39) +14800236701898403291*a(n-40) +25322051115388633008*a(n-41) -4508743030968094056*a(n-42) -7865459697245468979*a(n-43) +1057442897210898010*a(n-44) +1924976329595942305*a(n-45) -184260522052153725*a(n-46) -363857678790117669*a(n-47) +22495144659276550*a(n-48) +51256131298791960*a(n-49) -1703628391907221*a(n-50) -5174132833298306*a(n-51) +31958440654563*a(n-52) +356051842225588*a(n-53) +8478720765276*a(n-54) -15559987549608*a(n-55) -928226366784*a(n-56) +391908097536*a(n-57) +39777929088*a(n-58) -5180175168*a(n-59) -639510016*a(n-60) +39989248*a(n-61)

A207314 Number of nX5 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

216, 46656, 7791488, 1274682671, 205235353935, 32960886054362, 5287481507599689, 847996342709895834, 135988221568912041664, 21807179762496937194845, 3496992901399897131806933
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Column 5 of A207317

Examples

			Some solutions for n=4
..0..2..0..1..0....0..1..0..2..2....1..2..2..1..2....2..1..0..2..1
..0..1..0..0..2....2..0..1..0..0....0..1..1..2..1....2..2..1..1..0
..1..1..0..0..0....1..1..0..1..0....1..0..1..0..0....1..1..0..0..0
..1..2..0..2..1....1..1..2..0..2....1..1..2..0..2....0..0..2..0..0
		

A207315 Number of nX6 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

622, 386884, 174545777, 76655305645, 32960886054362, 14121763303437256, 6040603302358685420, 2582933724901198649918, 1104307821349717818359464, 472120223465963151312369423, 201841505612036976090187423377
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Column 6 of A207317

Examples

			Some solutions for n=4
..0..2..1..2..1..1....1..1..2..1..1..1....0..2..2..1..1..2....2..2..1..0..1..1
..1..1..2..0..1..0....0..1..0..2..1..2....2..1..2..0..1..1....0..0..2..0..0..0
..0..1..1..1..1..2....2..1..0..0..1..1....2..1..1..0..1..0....0..1..1..0..0..1
..1..2..2..0..0..1....1..0..0..1..0..2....0..1..1..2..0..0....0..0..0..0..0..1
		

A207316 Number of nX7 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

1791, 3207681, 3908531208, 4606553380932, 5287481507599689, 6040603302358685420, 6886304943923084187412, 7846460408825171428954937, 8938860707121704653295995157, 10182853721047511421514027307629
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Column 7 of A207317

Examples

			Some solutions for n=4
..1..1..1..0..0..1..0....1..2..1..0..1..0..1....1..1..0..1..1..1..1
..2..0..0..0..2..0..2....2..1..0..1..0..1..0....1..0..0..0..1..0..1
..2..0..1..0..0..0..2....1..1..1..1..0..0..2....0..2..1..0..2..2..1
..2..1..0..0..0..2..0....1..2..1..2..0..1..0....0..2..0..0..1..0..0
		

A207311 Number of n X n 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal.

Original entry on oeis.org

3, 81, 15390, 21162579, 205235353935, 14121763303437256, 6886304943923084187412, 23820527297958550757568717516, 584573521981314585923770355820671056
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Diagonal of A207317

Examples

			Some solutions for n=4
..1..0..2..0....0..2..0..2....1..1..1..0....0..2..2..0....2..2..1..2
..1..0..0..0....2..2..0..2....1..2..1..2....1..0..0..0....2..1..0..0
..2..1..0..0....2..0..1..0....0..1..0..1....0..2..1..2....1..1..1..0
..2..0..0..0....0..2..1..0....2..0..0..1....0..0..0..0....2..1..0..2
		
Showing 1-6 of 6 results.