This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207330 #14 Sep 17 2012 12:25:36 %S A207330 1,1,1,2,1,3,3,1,5,5,5,5,1,3,2,6,3,6,1,8,8,8,4,8,2,4,1,9,9,3,9,3,9,9, %T A207330 9,1,11,11,11,11,11,11,11,11,11,11,1,14,7,7,7,14,7,14,2,14,14,7,7,14, %U A207330 1,15,3,15,15,15,15,5,15,15,15,5,3,5,5,1,9,18,9 %N A207330 Array of the orders Modd p, p a prime. %C A207330 For Modd n (not to be confused with mod n) see a comment on A203571. %C A207330 The row lengths sequence of this array is 1 for row n=1, and (p(n)-1)/2, with p(n):=A000040(n) (the primes), for row n>1. %C A207330 A primitive root has order delta(p) = (p-1)/2 (delta is given by A055034). %F A207330 a(n,m) = (multiplicative) order Modd p(n) of 2*m-1, for m=1,...,(p(n)-1)/2, with p(n):= A000040(n) (the primes), n>1, and for a(1,1) = 1 for the prime 2. %e A207330 n, p(n)/m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... %e A207330 2m-1: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 ... %e A207330 1, 2: 1 %e A207330 2, 3: 1 %e A207330 3, 5: 1 2 %e A207330 4, 7: 1 3 3 %e A207330 5, 11: 1 5 5 5 5 %e A207330 6, 13: 1 3 2 6 3 6 %e A207330 7, 17: 1 8 8 8 4 8 2 4 %e A207330 8, 19: 1 9 9 3 9 3 9 9 9 %e A207330 9, 23: 1 11 11 11 11 11 11 11 11 11 11 %e A207330 10, 29: 1 14 7 7 7 14 7 14 2 14 14 7 7 14 %e A207330 ... %e A207330 a(6,4) = 6 because 7^1 = 7, 7^2 = 49, 49 (Modd 13) := -49 (mod 13) = 3, 7^3 == 7*3 = 21, %e A207330 21 (Modd 13) := -21 (mod 13) = 5, 7^4 == 7*5 = 35, 35 (Modd 13) = 35 (mod 13) = 9, %e A207330 7^5 == 7*9=63, 63 (Modd 13):= 63 (mod 13) = 11, 7^6 == 7*11 = 77, 77 (Modd 13) := -77 (mod 13) = 1. %e A207330 Row n=5: all 2*m-1, m>1, are primitive roots. The smallest positive one is 3. %e A207330 Row n=6: only 7 and 11 are primitive roots. The smallest one is 7. %Y A207330 Cf. A086145 (mod n case). %K A207330 nonn,easy,tabf %O A207330 1,4 %A A207330 _Wolfdieter Lang_, Mar 27 2012