cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207332 Double factorials (prime(n)-2)!!.

This page as a plain text file.
%I A207332 #39 Sep 14 2023 15:38:05
%S A207332 1,1,3,15,945,10395,2027025,34459425,13749310575,213458046676875,
%T A207332 6190283353629375,221643095476699771875,319830986772877770815625,
%U A207332 13113070457687988603440625,25373791335626257947657609375,2980227913743310874726229193921875
%N A207332 Double factorials (prime(n)-2)!!.
%C A207332 For the double factorials (2*n-1)!!, for n >= 1, see A001147, and n!! = A006882(n).
%C A207332 For a(n) Modd prime(n) see a comment on A209389 stating the analog of Wilson's theorem for Modd prime(n). For Modd n, (not to be confused with mod n) see a comment on A203571. - _Wolfdieter Lang_, Mar 28 2012
%C A207332 a(n)^2 == A212159(n) (mod prime(n)), n >= 2. See also the W. HolsztyƄski link given there. - _Wolfdieter Lang_, May 07 2012
%F A207332 a(1) = 0!! := 1 and a(n) = Product_{k=0..(prime(n)-3)/2} (2*k+1), n >= 2.
%F A207332 a(n) = A006882(prime(n)-2). - _Michel Marcus_, Sep 12 2023
%e A207332 For n = 5, prime(5) = A000040(5) = 11, 9!!= 1*3*5*7*9 = A040976(5)!! = A006882(9) = A001147(5) = 945.
%e A207332 a(5)^2 = 893025 == +1 (mod 11). - _Wolfdieter Lang_, May 07 2012
%t A207332 Table[(Prime[n] - 2)!!, {n, 1, 16}] (* _Amiram Eldar_, Sep 14 2023 *)
%o A207332 (PARI) a(n) = if (n==1, 1, prod(k=0, (prime(n)-3)/2, 2*k+1)); \\ _Michel Marcus_, Sep 12 2023
%Y A207332 Cf. A000040, A001147, A006882, A040976 (prime(n)-2).
%K A207332 nonn
%O A207332 1,3
%A A207332 _Wolfdieter Lang_, Feb 18 2012