This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207334 #10 Oct 02 2013 19:10:22 %S A207334 1,2,3,4,5,6,7,9,8,10,12,15,11,13,14,18,21,16,17,20,24,30,19,27,22,25, %T A207334 33,23,26,28,35,36,39,42,45,29,31,32,34,40,48,51,60,37,38,54,57,63,41, %U A207334 44,50,55,66,75,43,49,46,69,47,52,56,65,70,72,78,84,90,105,53,81,58,87,59,61,62,77,93,99 %N A207334 Array of indices N for which the minimal polynomial C(N,x) of 2*cos(Pi/N) has allowed degree A207335(n). %C A207334 For the minimal polynomial C(N,x) and its degree delta(N) see A207333. %C A207334 The row length sequence l(n) of this array is A207335(n). The allowed values for the degree delta(N) are v(n):=A207333(n). %F A207334 a(n,m), m=1..l(n):=A207335(n), n>=1, gives the m-th member of the set {N positive integer: delta(N)= v(n):= A207333(n)}, when read as ordered list with increasing numbers. %e A207334 Row length l(n), degree values v(n). %e A207334 l(n):=A207335(n): 3, 3, 2, 4, 1, 4, 5, 2, 3, 1, ... %e A207334 v(n):=A207333(n): 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, ... %e A207334 n, v(n)\m 1 2 3 4 5 ... %e A207334 1, 1: 1 2 3 %e A207334 2, 2: 4 5 6 %e A207334 3, 3: 7 9 %e A207334 4, 4: 8 10 12 15 %e A207334 5, 5: 11 %e A207334 6, 6: 13 14 18 21 %e A207334 7, 8: 16 17 20 24 30 %e A207334 8, 9: 19 27 %e A207334 9, 10: 22 25 33 %e A207334 10, 11: 23 %e A207334 ... %e A207334 a(4,2)=10 because C(10,x) has degree A207333(4)=4. In fact, C(10,x) = x^4-5*x^2+5. %e A207334 The set {N:delta(N)=v(4)=4} = {8,10,12,15} (ordered increasingly). Exactly these N indices lead to degree 4 %e A207334 polynomials C. %Y A207334 Cf. A032447 (array for cyclotomic polynomials with Euler's phi function as degree). %K A207334 nonn,easy,tabf %O A207334 1,2 %A A207334 _Wolfdieter Lang_, Feb 19 2012