A208296 Smallest positive nontrivial odd solution of the congruence x^2 == 1 (mod A001748(n+2)), n >= 1.
11, 13, 23, 25, 35, 37, 47, 59, 61, 73, 83, 85, 95, 107, 119, 121, 133, 143, 145, 157, 167, 179, 193, 203, 205, 215, 217, 227, 253, 263, 275, 277, 299, 301, 313, 325, 335, 347, 359, 361, 383, 385, 395, 397, 421, 445, 455, 457, 467, 479, 481, 503, 515
Offset: 1
Keywords
Examples
a(3)=23 because prime(5)=11=A007528(2), hence K(3)=11 and sqrt(8*T(11)+1)=sqrt(8*66+1)= 23. 23^2 = 529 == 1 (Modd 33), because floor(529/33)=16=8*A024699(3) is even, and 529 == 1 (mod 33). a(4)=25 because prime(6)=13=A002476(2), hence K(4)=12 and sqrt(8*T(12)+1)=sqrt(8*78+1)=25. 25^2 = 625 == 1 (Modd 39), because floor(625/39)=16=8*A024699(4) is even, and 625 == 1 (mod 39).
References
- H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Clarendon Press, Oxford, 2003.
Links
- Jon Maiga, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[SelectFirst[Solve[x^2==1 && x !=1,x, Modulus->3*Prime[n+2]][[All,1,2]],OddQ], {n, 53}] (* Jon Maiga, Sep 28 2019 *)
Formula
a(n) = sqrt(8*T(K(n))+1), with the triangular numbers T = A000217, and K(n) = prime(n+2)-1 if the prime prime(n+2) is of the form 6*k+1, i.e., from A002476, and K(n) = prime(n+2) if prime(n+2) is of the form 6*k-1, i.e. from A007528.
a(n)^2 == 1 (mod A001748(n+2)), n >= 1.
a(n)^2 == 1 (Modd A001748(n+2)), n >= 1.
Comments