This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207360 #21 Jun 18 2024 10:01:19 %S A207360 8,40,56,88,104,136,152,184,232,248,280,288,296,328,344,376,424,440, %T A207360 472,488,520,536,568,584,616,632,664,675,680,712,728,760,776,808,824, %U A207360 856,872,904,920,952,1016,1048,1064,1096,1112,1144,1160,1192,1208,1240,1256 %N A207360 Numbers n, not squarefree, satisfying A055231(n) = A055231(n + A055231(n)). %C A207360 A055231(n) is the powerfree part of n. %C A207360 This sequence is infinite because the numbers of the form n = 8p, where p is prime, are in the sequence : A055231(8p) = p and A055231(8p + p) = A055231(9p) = p. %C A207360 The numbers such that n and n+1 are a pair of consecutive powerful numbers (the again infinite A060355) are also in the sequence because A055231 (A060355(n)) = A055231(A060355 (n+1)) = 1. %e A207360 136 is in the sequence because A055231(136) = A055231(17*2^3) = 17, A055231(136 + 17) = A055231(153) = A055231(17*3^2) = 17. %p A207360 isA013929 := proc(n) %p A207360 n>3 and not numtheory[issqrfree](n) ; %p A207360 end proc: %p A207360 isA207360 := proc(n) %p A207360 isA013929(n) and (A055231(n)- A055231(n+ A055231(n))=0); %p A207360 end proc: %p A207360 for n from 1 to 5000 do %p A207360 if isA207360(n) then %p A207360 printf(`%d, `,n); %p A207360 end if; %p A207360 end do: # (adapted from A140394). %t A207360 rad[n_] := Times @@ FactorInteger[n][[All, 1]]; %t A207360 A055231[n_] := Denominator[n/rad[n]^2]; %t A207360 Select[Range[2000], !SquareFreeQ[#] && A055231[#] == A055231[# + A055231[#]]&] (* _Jean-François Alcover_, Jun 18 2024 *) %o A207360 (PARI) isA013929(n)={ %o A207360 (n>3) && !issquarefree(n) %o A207360 } %o A207360 isA207360(n)={ %o A207360 isA013929(n) && ( A055231(n)-A055231(n+A055231(n)) ==0) %o A207360 } %o A207360 { for(n=1,1300, if(isA207360(n), print1(n" ") ) ; ) ; %o A207360 } /* _R. J. Mathar_, Mar 12 2012 */ %Y A207360 Cf. A055231, A060355, A140394. %K A207360 nonn %O A207360 1,1 %A A207360 _Michel Lagneau_, Feb 17 2012