This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207361 #56 May 25 2022 09:16:06 %S A207361 0,1,11,53,173,448,994,1974,3606,6171,10021,15587,23387,34034,48244, %T A207361 66844,90780,121125,159087,206017,263417,332948,416438,515890,633490, %U A207361 771615,932841,1119951,1335943,1584038,1867688 %N A207361 Displacement under constant discrete unit surge. %C A207361 Assume discrete times 0, 1, 2, 3, ... %C A207361 Assume constant discrete unit surge (= jerk = rate of change of acceleration) starting surge(0) = 0. %C A207361 Also assume acceleration(0) = velocity(0) = displacement(0) = 0. %C A207361 So at t = 0, 1, 2, 3, 4, ... the acceleration = 0, 1, 2, 3, 4, ... %C A207361 Then the velocity v(t) = v(t-1) + a(t)*t. %C A207361 So the displacement = s(t) = s(t-1) + v(t)*t. %C A207361 v(0,1,2,3,4,...) = 0, 1, 5, 14, 30, 55, 91, 140, ... = A000330(n). %C A207361 The subsequence of primes is finite with three terms 11, 53, and 173. %H A207361 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A207361 a(0) = 0; for n>0, a(n) = a(n-1) + n*A000330(n) = a(n-1) + n*(0^2 + 1^2 + 2^2 + ... + n^2) = a(n-1) + n^2*(n+1)*(2*n+1)/6 = n*(1+n)*(2+n)*(1 + 11*n + 8*n^2)/120 = (2*n + 25*n^2 + 50*n^3 + 35*n^4 + 8*n^5)/120. %F A207361 G.f.: x*(2*x^2+5*x+1) / (x-1)^6. - _Colin Barker_, May 06 2013 %F A207361 a(n) = Sum_{i=0..n-1} A108678(i). - _J. M. Bergot_, May 02 2018 %F A207361 a(n) = Sum_{0<=i<=j<=n} i^2*j. - _Robert FERREOL_, May 24 2022 %e A207361 s(4) = s(3) + v(4)*4 = 53 + 30*4 = 53 + 120 = 173; %e A207361 s(5) = s(4) + v(5)*5 = 173 + 55*5 = 173 + 275 = 448; %e A207361 s(6) = s(5) + v(6)*6 = 448 + 91*6 = 448 + 546 = 994; %e A207361 s(7) = s(6) + v(7)*7 = 994 + 140*7 = 994 + 980 = 1974. %p A207361 a:=n->sum(sum(i^2*j,j=i..n),i=0..n): seq(a(n),n=0..30); # _Robert FERREOL_, May 24 2022 %t A207361 a[0] = 0; a[n_] := a[n] = a[n-1] + n^2*(n+1)*(2*n+1)/6; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Oct 22 2015 *) %o A207361 (Maxima) A207361(n) := block( %o A207361 n*(1+n)*(2+n)*(1+11*n+8*n^2)/120 %o A207361 )$ /* _R. J. Mathar_, Mar 08 2012 */ %Y A207361 Cf. A000330, A101856, A108678. %K A207361 nonn,easy %O A207361 0,3 %A A207361 _Jonathan Vos Post_, Feb 18 2012