A207366 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.
18, 324, 1350, 5625, 15525, 42849, 95220, 211600, 409860, 793881, 1397088, 2458624, 4029760, 6604900, 10246590, 15896169, 23603040, 35046400, 50207520, 71927361, 100016433, 139074849, 188570070, 255680100, 339259830, 450161089, 586225710
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0..0..1....0..1..0..0..1..0....1..0..1..0..1..0....0..1..0..0..1..0 ..0..1..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..1....0..0..1..0..1..0 ..0..0..1..0..0..1....0..1..0..0..1..0....0..0..1..0..1..0....0..1..0..0..1..0 ..0..1..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..1....0..0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)
Comments