This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207375 #49 Apr 07 2025 09:26:50 %S A207375 1,1,2,1,3,2,1,5,2,3,1,7,2,4,3,2,5,1,11,3,4,1,13,2,7,3,5,4,1,17,3,6,1, %T A207375 19,4,5,3,7,2,11,1,23,4,6,5,2,13,3,9,4,7,1,29,5,6,1,31,4,8,3,11,2,17, %U A207375 5,7,6,1,37,2,19,3,13,5,8,1,41,6,7,1,43 %N A207375 Irregular array read by rows in which row n lists the (one or two) central divisors of n in increasing order. %C A207375 If n is a square then row n lists only the square root of n because the squares (A000290) have only one central divisor. %C A207375 If n is not a square then row n lists the pair (j, k) of divisors of n, nearest to the square root of n, such that j*k = n. %C A207375 Conjecture 1: It appears that the n-th record in this sequence is the last member of row A008578(n). %C A207375 Column 1 gives A033676. Right border gives A033677. - _Omar E. Pol_, Feb 26 2019 %C A207375 The conjecture 1 follows from Bertrand's Postulate. - _Charles R Greathouse IV_, Feb 11 2022 %C A207375 Row products give A097448. - _Omar E. Pol_, Feb 17 2022 %H A207375 Alois P. Heinz, <a href="/A207375/b207375.txt">Rows n = 1..5000</a> %H A207375 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv05.jpg">Illustration of the divisors of the first 12 positive integers</a> %e A207375 Array begins: %e A207375 1; %e A207375 1, 2; %e A207375 1, 3; %e A207375 2; %e A207375 1, 5; %e A207375 2, 3; %e A207375 1, 7; %e A207375 2, 4; %e A207375 3; %e A207375 2, 5; %e A207375 1, 11; %e A207375 3, 4; %e A207375 1, 13; %e A207375 ... %t A207375 A207375row[n_] := ArrayPad[#, -Floor[(Length[#] - 1)/2]] & [Divisors[n]]; %t A207375 Array[A207375row, 50] (* _Paolo Xausa_, Apr 07 2025 *) %Y A207375 Row n has length A169695(n). %Y A207375 Row sums give A207376. %Y A207375 Cf. A000005, A000290, A008578, A027750, A033676, A033677, A097448, A161901, A161904. %K A207375 nonn,tabf %O A207375 1,3 %A A207375 _Omar E. Pol_, Feb 23 2012